sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(12)
sage: chi = H[11]
pari: [g,chi] = znchar(Mod(11,12))
Kronecker symbol representation
sage: kronecker_character(12)
pari: znchartokronecker(g,chi)
\(\displaystyle\left(\frac{12}{\bullet}\right)\)
Basic properties
| sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
| Conductor | = | 12 |
| sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
| Order | = | 2 |
| Real | = | Yes |
| sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
| Primitive | = | Yes |
| sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
| Parity | = | Even |
| Orbit label | = | 12.b |
| Orbit index | = | 2 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values on generators
\((7,5)\) → \((-1,-1)\)
Values
| -1 | 1 | 5 | 7 |
| \(1\) | \(1\) | \(-1\) | \(-1\) |
Related number fields
| Field of values | \(\Q\) |
Gauss sum
sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{12}(11,\cdot)) = \sum_{r\in \Z/12\Z} \chi_{12}(11,r) e\left(\frac{r}{6}\right) = 0.0 \)
Jacobi sum
sage: chi.sage_character().jacobi_sum(n)
\( \displaystyle J(\chi_{12}(11,\cdot),\chi_{12}(1,\cdot)) = \sum_{r\in \Z/12\Z} \chi_{12}(11,r) \chi_{12}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.sage_character().kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{12}(11,·))
= \sum_{r \in \Z/12\Z}
\chi_{12}(11,r) e\left(\frac{1 r + 2 r^{-1}}{12}\right)
= 0.0 \)