sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11025, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([28,21,30]))
pari:[g,chi] = znchar(Mod(799,11025))
\(\chi_{11025}(274,\cdot)\)
\(\chi_{11025}(799,\cdot)\)
\(\chi_{11025}(1849,\cdot)\)
\(\chi_{11025}(2374,\cdot)\)
\(\chi_{11025}(3424,\cdot)\)
\(\chi_{11025}(3949,\cdot)\)
\(\chi_{11025}(5524,\cdot)\)
\(\chi_{11025}(6574,\cdot)\)
\(\chi_{11025}(7099,\cdot)\)
\(\chi_{11025}(8149,\cdot)\)
\(\chi_{11025}(9724,\cdot)\)
\(\chi_{11025}(10249,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,4852,9901)\) → \((e\left(\frac{2}{3}\right),-1,e\left(\frac{5}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 11025 }(799, a) \) |
\(1\) | \(1\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(1\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{41}{42}\right)\) |
sage:chi.jacobi_sum(n)