sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2205, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([28,21,30]))
pari:[g,chi] = znchar(Mod(799,2205))
Modulus: | \(2205\) | |
Conductor: | \(2205\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(42\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2205}(169,\cdot)\)
\(\chi_{2205}(274,\cdot)\)
\(\chi_{2205}(484,\cdot)\)
\(\chi_{2205}(799,\cdot)\)
\(\chi_{2205}(904,\cdot)\)
\(\chi_{2205}(1114,\cdot)\)
\(\chi_{2205}(1219,\cdot)\)
\(\chi_{2205}(1429,\cdot)\)
\(\chi_{2205}(1534,\cdot)\)
\(\chi_{2205}(1744,\cdot)\)
\(\chi_{2205}(1849,\cdot)\)
\(\chi_{2205}(2164,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,442,1081)\) → \((e\left(\frac{2}{3}\right),-1,e\left(\frac{5}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 2205 }(799, a) \) |
\(1\) | \(1\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(1\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{41}{42}\right)\) |
sage:chi.jacobi_sum(n)