Properties

Label 7.1.7.11a1.3
Base \(\Q_{7}\)
Degree \(7\)
e \(7\)
f \(1\)
c \(11\)
Galois group $F_7$ (as 7T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{7} + 21 x^{5} + 7\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $7$
Ramification index $e$: $7$
Residue field degree $f$: $1$
Discriminant exponent $c$: $11$
Discriminant root field: $\Q_{7}(\sqrt{7\cdot 3})$
Root number: $-i$
$\Aut(K/\Q_{7})$: $C_1$
This field is not Galois over $\Q_{7}.$
Visible Artin slopes:$[\frac{11}{6}]$
Visible Swan slopes:$[\frac{5}{6}]$
Means:$\langle\frac{5}{7}\rangle$
Rams:$(\frac{5}{6})$
Jump set:undefined
Roots of unity:$6 = (7 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$.

Canonical tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial: \( x^{7} + 21 x^{5} + 7 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 6$
Associated inertia:$1$
Indices of inseparability:$[5, 0]$

Invariants of the Galois closure

Galois degree: $42$
Galois group: $F_7$ (as 7T4)
Inertia group: $F_7$ (as 7T4)
Wild inertia group: $C_7$
Galois unramified degree: $1$
Galois tame degree: $6$
Galois Artin slopes: $[\frac{11}{6}]$
Galois Swan slopes: $[\frac{5}{6}]$
Galois mean slope: $1.6904761904761905$
Galois splitting model:$x^{7} - 14 x^{4} + 7 x^{3} + 28 x^{2} + 21 x + 8$