Defining polynomial
$( x^{2} + 4 x + 2 )^{4} + 5 x$
|
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $8$ |
Ramification index $e$: | $4$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $6$ |
Discriminant root field: | $\Q_{5}(\sqrt{2})$ |
Root number: | $1$ |
$\Aut(K/\Q_{5})$ $=$$\Gal(K/\Q_{5})$: | $C_8$ |
This field is Galois and abelian over $\Q_{5}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $24 = (5^{ 2 } - 1)$ |
Intermediate fields
$\Q_{5}(\sqrt{2})$, 5.2.2.2a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of
\( x^{2} + 4 x + 2 \)
|
Relative Eisenstein polynomial: |
\( x^{4} + 5 t \)
$\ \in\Q_{5}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^{3} + 4 z^{2} + z + 4$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $8$ |
Galois group: | $C_8$ (as 8T1) |
Inertia group: | Intransitive group isomorphic to $C_4$ |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $4$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[]$ |
Galois mean slope: | $0.75$ |
Galois splitting model: | $x^{8} - x^{7} + 10 x^{6} + 6 x^{5} + 49 x^{4} - 129 x^{3} + 500 x^{2} + 2044 x + 1616$ |