Properties

Label 5.2.4.6a1.1
Base \(\Q_{5}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 4 x + 2 )^{4} + 5 x$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $8$
Ramification index $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{5})$ $=$$\Gal(K/\Q_{5})$: $C_8$
This field is Galois and abelian over $\Q_{5}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$24 = (5^{ 2 } - 1)$

Intermediate fields

$\Q_{5}(\sqrt{2})$, 5.2.2.2a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 5 t \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + 4 z^{2} + z + 4$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $8$
Galois group: $C_8$ (as 8T1)
Inertia group: Intransitive group isomorphic to $C_4$
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $4$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[]$
Galois mean slope: $0.75$
Galois splitting model:$x^{8} - x^{7} + 10 x^{6} + 6 x^{5} + 49 x^{4} - 129 x^{3} + 500 x^{2} + 2044 x + 1616$