Properties

Label 5.1.5.8a2.1
Base \(\Q_{5}\)
Degree \(5\)
e \(5\)
f \(1\)
c \(8\)
Galois group $F_5$ (as 5T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{5} + 10 x^{4} + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $5$
Ramification index $e$: $5$
Residue field degree $f$: $1$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{5})$: $C_1$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{4}{5}\rangle$
Rams:$(1)$
Jump set:undefined
Roots of unity:$4 = (5 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 5 }$.

Canonical tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{5} + 10 x^{4} + 5 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{4} + 2$
Associated inertia:$4$
Indices of inseparability:$[4, 0]$

Invariants of the Galois closure

Galois degree: $20$
Galois group: $F_5$ (as 5T3)
Inertia group: $C_5$ (as 5T1)
Wild inertia group: $C_5$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2]$
Galois Swan slopes: $[1]$
Galois mean slope: $1.6$
Galois splitting model:$x^{5} - 10 x^{3} - 180 x^{2} + 935 x - 1156$