Properties

Label 5.1.5.6a1.1
Base \(\Q_{5}\)
Degree \(5\)
e \(5\)
f \(1\)
c \(6\)
Galois group $D_{5}$ (as 5T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{5} + 10 x^{2} + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $5$
Ramification index $e$: $5$
Residue field degree $f$: $1$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{5}$
Root number: $1$
$\Aut(K/\Q_{5})$: $C_1$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[\frac{3}{2}]$
Visible Swan slopes:$[\frac{1}{2}]$
Means:$\langle\frac{2}{5}\rangle$
Rams:$(\frac{1}{2})$
Jump set:undefined
Roots of unity:$4 = (5 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 5 }$.

Canonical tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{5} + 10 x^{2} + 5 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 1$
Associated inertia:$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois degree: $10$
Galois group: $D_5$ (as 5T2)
Inertia group: $D_5$ (as 5T2)
Wild inertia group: $C_5$
Galois unramified degree: $1$
Galois tame degree: $2$
Galois Artin slopes: $[\frac{3}{2}]$
Galois Swan slopes: $[\frac{1}{2}]$
Galois mean slope: $1.3$
Galois splitting model:$x^{5} - 5 x^{2} - 3$