Defining polynomial
\(x^{5} + 10 x^{2} + 5\)
|
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $5$ |
Ramification index $e$: | $5$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $6$ |
Discriminant root field: | $\Q_{5}$ |
Root number: | $1$ |
$\Aut(K/\Q_{5})$: | $C_1$ |
This field is not Galois over $\Q_{5}.$ | |
Visible Artin slopes: | $[\frac{3}{2}]$ |
Visible Swan slopes: | $[\frac{1}{2}]$ |
Means: | $\langle\frac{2}{5}\rangle$ |
Rams: | $(\frac{1}{2})$ |
Jump set: | undefined |
Roots of unity: | $4 = (5 - 1)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 5 }$. |
Canonical tower
Unramified subfield: | $\Q_{5}$ |
Relative Eisenstein polynomial: |
\( x^{5} + 10 x^{2} + 5 \)
|
Ramification polygon
Residual polynomials: | $z^{2} + 1$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[2, 0]$ |
Invariants of the Galois closure
Galois degree: | $10$ |
Galois group: | $D_5$ (as 5T2) |
Inertia group: | $D_5$ (as 5T2) |
Wild inertia group: | $C_5$ |
Galois unramified degree: | $1$ |
Galois tame degree: | $2$ |
Galois Artin slopes: | $[\frac{3}{2}]$ |
Galois Swan slopes: | $[\frac{1}{2}]$ |
Galois mean slope: | $1.3$ |
Galois splitting model: | $x^{5} - 5 x^{2} - 3$ |