Defining polynomial
$( x^{3} + 3 x + 3 )^{5} + \left(20 x^{2} + 10 x + 15\right) ( x^{3} + 3 x + 3 ) + 5$
|
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $15$ |
Ramification index $e$: | $5$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $15$ |
Discriminant root field: | $\Q_{5}(\sqrt{5})$ |
Root number: | $-1$ |
$\Aut(K/\Q_{5})$: | $C_1$ |
This field is not Galois over $\Q_{5}.$ | |
Visible Artin slopes: | $[\frac{5}{4}]$ |
Visible Swan slopes: | $[\frac{1}{4}]$ |
Means: | $\langle\frac{1}{5}\rangle$ |
Rams: | $(\frac{1}{4})$ |
Jump set: | undefined |
Roots of unity: | $124 = (5^{ 3 } - 1)$ |
Intermediate fields
5.3.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 5.3.1.0a1.1 $\cong \Q_{5}(t)$ where $t$ is a root of
\( x^{3} + 3 x + 3 \)
|
Relative Eisenstein polynomial: |
\( x^{5} + \left(10 t^{2} + 10 t + 20\right) x + 5 \)
$\ \in\Q_{5}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + (3 t + 4)$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[1, 0]$ |
Invariants of the Galois closure
Galois degree: | $1500$ |
Galois group: | $C_5^3:C_{12}$ (as 15T38) |
Inertia group: | Intransitive group isomorphic to $C_5^3:C_4$ |
Wild inertia group: | $C_5^3$ |
Galois unramified degree: | $3$ |
Galois tame degree: | $4$ |
Galois Artin slopes: | $[\frac{5}{4}, \frac{5}{4}, \frac{5}{4}]$ |
Galois Swan slopes: | $[\frac{1}{4},\frac{1}{4},\frac{1}{4}]$ |
Galois mean slope: | $1.246$ |
Galois splitting model: |
$x^{15} + 5 x^{13} - 25 x^{11} - 2 x^{10} - 100 x^{9} + 180 x^{8} + 25 x^{7} + 560 x^{6} + 102 x^{5} + 450 x^{4} - 495 x^{3} - 100 x^{2} - 300 x + 232$
|