Properties

Label 5.3.5.15a15.1
Base \(\Q_{5}\)
Degree \(15\)
e \(5\)
f \(3\)
c \(15\)
Galois group $C_5^3:C_{12}$ (as 15T38)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + 3 x + 3 )^{5} + \left(20 x^{2} + 10 x + 15\right) ( x^{3} + 3 x + 3 ) + 5$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $15$
Ramification index $e$: $5$
Residue field degree $f$: $3$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{5}(\sqrt{5})$
Root number: $-1$
$\Aut(K/\Q_{5})$: $C_1$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[\frac{5}{4}]$
Visible Swan slopes:$[\frac{1}{4}]$
Means:$\langle\frac{1}{5}\rangle$
Rams:$(\frac{1}{4})$
Jump set:undefined
Roots of unity:$124 = (5^{ 3 } - 1)$

Intermediate fields

5.3.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:5.3.1.0a1.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} + 3 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + \left(10 t^{2} + 10 t + 20\right) x + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (3 t + 4)$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: $1500$
Galois group: $C_5^3:C_{12}$ (as 15T38)
Inertia group: Intransitive group isomorphic to $C_5^3:C_4$
Wild inertia group: $C_5^3$
Galois unramified degree: $3$
Galois tame degree: $4$
Galois Artin slopes: $[\frac{5}{4}, \frac{5}{4}, \frac{5}{4}]$
Galois Swan slopes: $[\frac{1}{4},\frac{1}{4},\frac{1}{4}]$
Galois mean slope: $1.246$
Galois splitting model: $x^{15} + 5 x^{13} - 25 x^{11} - 2 x^{10} - 100 x^{9} + 180 x^{8} + 25 x^{7} + 560 x^{6} + 102 x^{5} + 450 x^{4} - 495 x^{3} - 100 x^{2} - 300 x + 232$ Copy content Toggle raw display