Defining polynomial
| $( x^{3} + 3 x + 3 )^{5} + \left(20 x^{2} + 10 x + 15\right) ( x^{3} + 3 x + 3 ) + 5$ | 
Invariants
| Base field: | $\Q_{5}$ | 
| Degree $d$: | $15$ | 
| Ramification index $e$: | $5$ | 
| Residue field degree $f$: | $3$ | 
| Discriminant exponent $c$: | $15$ | 
| Discriminant root field: | $\Q_{5}(\sqrt{5})$ | 
| Root number: | $-1$ | 
| $\Aut(K/\Q_{5})$: | $C_1$ | 
| This field is not Galois over $\Q_{5}.$ | |
| Visible Artin slopes: | $[\frac{5}{4}]$ | 
| Visible Swan slopes: | $[\frac{1}{4}]$ | 
| Means: | $\langle\frac{1}{5}\rangle$ | 
| Rams: | $(\frac{1}{4})$ | 
| Jump set: | undefined | 
| Roots of unity: | $124 = (5^{ 3 } - 1)$ | 
Intermediate fields
| 5.3.1.0a1.1 | 
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | 5.3.1.0a1.1 $\cong \Q_{5}(t)$ where $t$ is a root of 
    \( x^{3} + 3 x + 3 \) | 
| Relative Eisenstein polynomial: | \( x^{5} + \left(10 t^{2} + 10 t + 20\right) x + 5 \)
    
    $\ \in\Q_{5}(t)[x]$ | 
Ramification polygon
| Residual polynomials: | $z + (3 t + 4)$ | 
| Associated inertia: | $1$ | 
| Indices of inseparability: | $[1, 0]$ | 
Invariants of the Galois closure
| Galois degree: | $1500$ | 
| Galois group: | $C_5^3:C_{12}$ (as 15T38) | 
| Inertia group: | Intransitive group isomorphic to $C_5^3:C_4$ | 
| Wild inertia group: | $C_5^3$ | 
| Galois unramified degree: | $3$ | 
| Galois tame degree: | $4$ | 
| Galois Artin slopes: | $[\frac{5}{4}, \frac{5}{4}, \frac{5}{4}]$ | 
| Galois Swan slopes: | $[\frac{1}{4},\frac{1}{4},\frac{1}{4}]$ | 
| Galois mean slope: | $1.246$ | 
| Galois splitting model: | $x^{15} + 5 x^{13} - 25 x^{11} - 2 x^{10} - 100 x^{9} + 180 x^{8} + 25 x^{7} + 560 x^{6} + 102 x^{5} + 450 x^{4} - 495 x^{3} - 100 x^{2} - 300 x + 232$ | 
