Error: Incorrect local algebra for Q(zeta3)
Defining polynomial
\(x^{11} + 5\)
|
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $11$ |
Ramification index $e$: | $11$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $10$ |
Discriminant root field: | $\Q_{5}$ |
Root number: | $1$ |
$\Aut(K/\Q_{5})$: | $C_1$ |
This field is not Galois over $\Q_{5}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $4 = (5 - 1)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 5 }$. |
Canonical tower
Unramified subfield: | $\Q_{5}$ |
Relative Eisenstein polynomial: |
\( x^{11} + 5 \)
|
Ramification polygon
Residual polynomials: | $z^{10} + z^{9} + 2 z^{5} + 2 z^{4} + 1$ |
Associated inertia: | $5$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $55$ |
Galois group: | $C_{11}:C_5$ (as 11T3) |
Inertia group: | $C_{11}$ (as 11T1) |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $5$ |
Galois tame degree: | $11$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[]$ |
Galois mean slope: | $0.9090909090909091$ |
Galois splitting model: | $x^{11} - 55 x^{9} + 1100 x^{7} - 9625 x^{5} + 34375 x^{3} - 34375 x - 12675$ |