Properties

Label 5.10.16.26
Base \(\Q_{5}\)
Degree \(10\)
e \(5\)
f \(2\)
c \(16\)
Galois group $D_5\times C_5$ (as 10T6)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} - 20 x^{9} - 350 x^{8} - 190 x^{5} - 4100 x^{4} - 10975\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $10$
Ramification exponent $e$: $5$
Residue field degree $f$: $2$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 5 }) }$: $5$
This field is not Galois over $\Q_{5}.$
Visible slopes:$[2]$

Intermediate fields

$\Q_{5}(\sqrt{2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + \left(15 t + 20\right) x^{4} + 100 t + 105 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{4} + 3t + 4$
Associated inertia:$1$
Indices of inseparability:$[4, 0]$

Invariants of the Galois closure

Galois group:$C_5\times D_5$ (as 10T6)
Inertia group:Intransitive group isomorphic to $C_5^2$
Wild inertia group:$C_5^2$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:$[2, 2]$
Galois mean slope:$48/25$
Galois splitting model:$x^{10} + 110 x^{8} - 825 x^{7} + 5280 x^{6} - 84260 x^{5} + 296450 x^{4} - 3000800 x^{3} + 18227440 x^{2} - 37758050 x + 396143473$