Properties

Label 3.2.3.8a3.1
Base \(\Q_{3}\)
Degree \(6\)
e \(3\)
f \(2\)
c \(8\)
Galois group $C_3^2:C_4$ (as 6T10)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 2 x + 2 )^{3} + 3 x ( x^{2} + 2 x + 2 )^{2} + 3$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $6$
Ramification index $e$: $3$
Residue field degree $f$: $2$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_1$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{2}{3}\rangle$
Rams:$(1)$
Jump set:undefined
Roots of unity:$8 = (3^{ 2 } - 1)$

Intermediate fields

$\Q_{3}(\sqrt{2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(6 t + 3\right) x^{2} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 2 t$
Associated inertia:$2$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois degree: $36$
Galois group: $C_3^2:C_4$ (as 6T10)
Inertia group: Intransitive group isomorphic to $C_3^2$
Wild inertia group: $C_3^2$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2]$
Galois Swan slopes: $[1,1]$
Galois mean slope: $1.7777777777777777$
Galois splitting model:$x^{6} - 6 x^{4} - x^{3} + 9 x^{2} + 3 x - 11$