Properties

Label 3.1.6.10a1.1
Base \(\Q_{3}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(10\)
Galois group $C_3^2:D_4$ (as 6T13)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + 3 x^{5} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $6$
Ramification index $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_1$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{9}{4}]$
Visible Swan slopes:$[\frac{5}{4}]$
Means:$\langle\frac{5}{6}\rangle$
Rams:$(\frac{5}{2})$
Jump set:$[1, 7]$
Roots of unity:$6 = (3 - 1) \cdot 3$

Intermediate fields

$\Q_{3}(\sqrt{3\cdot 2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{6} + 3 x^{5} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + 2$,$2 z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 0]$

Invariants of the Galois closure

Galois degree: $72$
Galois group: $\SOPlus(4,2)$ (as 6T13)
Inertia group: $C_3^2:C_4$ (as 6T10)
Wild inertia group: $C_3^2$
Galois unramified degree: $2$
Galois tame degree: $4$
Galois Artin slopes: $[\frac{9}{4}, \frac{9}{4}]$
Galois Swan slopes: $[\frac{5}{4},\frac{5}{4}]$
Galois mean slope: $2.0833333333333335$
Galois splitting model:$x^{6} - 6 x^{4} - 4 x^{3} + 9 x^{2} + 12 x + 7$