Defining polynomial
\(x^{6} + 3 x^{5} + 3\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $6$ |
Ramification index $e$: | $6$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $10$ |
Discriminant root field: | $\Q_{3}(\sqrt{2})$ |
Root number: | $1$ |
$\Aut(K/\Q_{3})$: | $C_1$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[\frac{9}{4}]$ |
Visible Swan slopes: | $[\frac{5}{4}]$ |
Means: | $\langle\frac{5}{6}\rangle$ |
Rams: | $(\frac{5}{2})$ |
Jump set: | $[1, 7]$ |
Roots of unity: | $6 = (3 - 1) \cdot 3$ |
Intermediate fields
$\Q_{3}(\sqrt{3\cdot 2})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{3}$ |
Relative Eisenstein polynomial: |
\( x^{6} + 3 x^{5} + 3 \)
|
Ramification polygon
Residual polynomials: | $z^{3} + 2$,$2 z + 1$ |
Associated inertia: | $1$,$1$ |
Indices of inseparability: | $[5, 0]$ |
Invariants of the Galois closure
Galois degree: | $72$ |
Galois group: | $\SOPlus(4,2)$ (as 6T13) |
Inertia group: | $C_3^2:C_4$ (as 6T10) |
Wild inertia group: | $C_3^2$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $4$ |
Galois Artin slopes: | $[\frac{9}{4}, \frac{9}{4}]$ |
Galois Swan slopes: | $[\frac{5}{4},\frac{5}{4}]$ |
Galois mean slope: | $2.0833333333333335$ |
Galois splitting model: | $x^{6} - 6 x^{4} - 4 x^{3} + 9 x^{2} + 12 x + 7$ |