Properties

Label 3.12.1.0a1.1
Base \(\Q_{3}\)
Degree \(12\)
e \(1\)
f \(12\)
c \(0\)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + x^{6} + x^{5} + x^{4} + x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification index $e$: $1$
Residue field degree $f$: $12$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{3})$ $=$$\Gal(K/\Q_{3})$: $C_{12}$
This field is Galois and abelian over $\Q_{3}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$531440 = (3^{ 12 } - 1)$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.3.1.0a1.1, 3.4.1.0a1.1, 3.6.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:3.12.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{12} + x^{6} + x^{5} + x^{4} + x^{2} + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: $12$
Galois group: $C_{12}$ (as 12T1)
Inertia group: trivial
Wild inertia group: $C_1$
Galois unramified degree: $12$
Galois tame degree: $1$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.0$
Galois splitting model:$x^{12} - x^{11} + 3 x^{10} - 4 x^{9} + 9 x^{8} + 2 x^{7} + 12 x^{6} + x^{5} + 25 x^{4} - 11 x^{3} + 5 x^{2} - 2 x + 1$