Defining polynomial
$( x^{3} + x + 1 )^{2} + 4 ( x^{3} + x + 1 ) + 10$
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $6$ |
Ramification index $e$: | $2$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $9$ |
Discriminant root field: | $\Q_{2}(\sqrt{2\cdot 5})$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: | $C_6$ |
This field is Galois and abelian over $\Q_{2}.$ | |
Visible Artin slopes: | $[3]$ |
Visible Swan slopes: | $[2]$ |
Means: | $\langle1\rangle$ |
Rams: | $(2)$ |
Jump set: | $[1, 3]$ |
Roots of unity: | $14 = (2^{ 3 } - 1) \cdot 2$ |
Intermediate fields
$\Q_{2}(\sqrt{2\cdot 5})$, 2.3.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 2.3.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{3} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{2} + 4 x + 10 \)
$\ \in\Q_{2}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + (t^{2} + t + 1)$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[2, 0]$ |
Invariants of the Galois closure
Galois degree: | $6$ |
Galois group: | $C_6$ (as 6T1) |
Inertia group: | Intransitive group isomorphic to $C_2$ |
Wild inertia group: | $C_2$ |
Galois unramified degree: | $3$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[3]$ |
Galois Swan slopes: | $[2]$ |
Galois mean slope: | $1.5$ |
Galois splitting model: | $x^{6} + 12 x^{4} + 36 x^{2} + 24$ |