Defining polynomial
$( x^{2} + x + 1 )^{5} + 2$
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $10$ |
Ramification index $e$: | $5$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $8$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | $[5]$ |
Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Intermediate fields
$\Q_{2}(\sqrt{5})$, 2.1.5.4a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{5} + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^{4} + z^{3} + 1$ |
Associated inertia: | $2$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $20$ |
Galois group: | $F_5$ (as 10T4) |
Inertia group: | Intransitive group isomorphic to $C_5$ |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $4$ |
Galois tame degree: | $5$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[]$ |
Galois mean slope: | $0.8$ |
Galois splitting model: | $x^{10} - 5 x^{9} + 15 x^{8} - 30 x^{7} + 45 x^{6} - 49 x^{5} + 35 x^{4} - 10 x^{3} - 5 x^{2} + 5 x - 1$ |