Properties

Label 2.2.5.8a1.1
Base \(\Q_{2}\)
Degree \(10\)
e \(5\)
f \(2\)
c \(8\)
Galois group $F_5$ (as 10T4)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{5} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $10$
Ramification index $e$: $5$
Residue field degree $f$: $2$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:$[5]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.1.5.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{4} + z^{3} + 1$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $20$
Galois group: $F_5$ (as 10T4)
Inertia group: Intransitive group isomorphic to $C_5$
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $5$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[]$
Galois mean slope: $0.8$
Galois splitting model:$x^{10} - 5 x^{9} + 15 x^{8} - 30 x^{7} + 45 x^{6} - 49 x^{5} + 35 x^{4} - 10 x^{3} - 5 x^{2} + 5 x - 1$