Properties

Label 13.1.5.4a1.1
Base \(\Q_{13}\)
Degree \(5\)
e \(5\)
f \(1\)
c \(4\)
Galois group $F_5$ (as 5T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{5} + 13\) Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $5$
Ramification index $e$: $5$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{13}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{13})$: $C_1$
This field is not Galois over $\Q_{13}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$12 = (13 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 13 }$.

Canonical tower

Unramified subfield:$\Q_{13}$
Relative Eisenstein polynomial: \( x^{5} + 13 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{4} + 5 z^{3} + 10 z^{2} + 10 z + 5$
Associated inertia:$4$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $20$
Galois group: $F_5$ (as 5T3)
Inertia group: $C_5$ (as 5T1)
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $5$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[]$
Galois mean slope: $0.8$
Galois splitting model:$x^{5} - 13$