Properties

Label 13.1.14.13a1.1
Base \(\Q_{13}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(13\)
Galois group $D_{14}$ (as 14T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{14} + 13\) Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $14$
Ramification index $e$: $14$
Residue field degree $f$: $1$
Discriminant exponent $c$: $13$
Discriminant root field: $\Q_{13}(\sqrt{13})$
Root number: $-1$
$\Aut(K/\Q_{13})$: $C_2$
This field is not Galois over $\Q_{13}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$12 = (13 - 1)$

Intermediate fields

$\Q_{13}(\sqrt{13})$, 13.1.7.6a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{13}$
Relative Eisenstein polynomial: \( x^{14} + 13 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{13} + z^{12} + 1$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $28$
Galois group: $D_{14}$ (as 14T3)
Inertia group: $C_{14}$ (as 14T1)
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $14$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[]$
Galois mean slope: $0.9285714285714286$
Galois splitting model:not computed