Properties

Label 13.2.7.12a1.3
Base \(\Q_{13}\)
Degree \(14\)
e \(7\)
f \(2\)
c \(12\)
Galois group $C_7 \wr C_2$ (as 14T8)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 12 x + 2 )^{7} + 130 x + 26$ Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $14$
Ramification index $e$: $7$
Residue field degree $f$: $2$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{13}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{13})$: $C_7$
This field is not Galois over $\Q_{13}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$168 = (13^{ 2 } - 1)$

Intermediate fields

$\Q_{13}(\sqrt{2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{13}(\sqrt{2})$ $\cong \Q_{13}(t)$ where $t$ is a root of \( x^{2} + 12 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{7} + 156 t + 143 \) $\ \in\Q_{13}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{6} + 7 z^{5} + 8 z^{4} + 9 z^{3} + 9 z^{2} + 8 z + 7$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $98$
Galois group: $C_7\times D_7$ (as 14T8)
Inertia group: Intransitive group isomorphic to $C_7$
Wild inertia group: $C_1$
Galois unramified degree: $14$
Galois tame degree: $7$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[]$
Galois mean slope: $0.8571428571428571$
Galois splitting model:not computed