Properties

Label 13.1.13.15a3.4
Base \(\Q_{13}\)
Degree \(13\)
e \(13\)
f \(1\)
c \(15\)
Galois group $F_{13}$ (as 13T6)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{13} + 143 x^{3} + 13\) Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $13$
Ramification index $e$: $13$
Residue field degree $f$: $1$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{13}(\sqrt{13\cdot 2})$
Root number: $1$
$\Aut(K/\Q_{13})$: $C_1$
This field is not Galois over $\Q_{13}.$
Visible Artin slopes:$[\frac{5}{4}]$
Visible Swan slopes:$[\frac{1}{4}]$
Means:$\langle\frac{3}{13}\rangle$
Rams:$(\frac{1}{4})$
Jump set:undefined
Roots of unity:$12 = (13 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 13 }$.

Canonical tower

Unramified subfield:$\Q_{13}$
Relative Eisenstein polynomial: \( x^{13} + 143 x^{3} + 13 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + 6$
Associated inertia:$3$
Indices of inseparability:$[3, 0]$

Invariants of the Galois closure

Galois degree: $156$
Galois group: $F_{13}$ (as 13T6)
Inertia group: $C_{13}:C_4$ (as 13T4)
Wild inertia group: $C_{13}$
Galois unramified degree: $3$
Galois tame degree: $4$
Galois Artin slopes: $[\frac{5}{4}]$
Galois Swan slopes: $[\frac{1}{4}]$
Galois mean slope: $1.2115384615384615$
Galois splitting model:not computed