Defining polynomial
\(x^{13} + 143 x^{3} + 13\)
|
Invariants
Base field: | $\Q_{13}$ |
Degree $d$: | $13$ |
Ramification index $e$: | $13$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $15$ |
Discriminant root field: | $\Q_{13}(\sqrt{13\cdot 2})$ |
Root number: | $1$ |
$\Aut(K/\Q_{13})$: | $C_1$ |
This field is not Galois over $\Q_{13}.$ | |
Visible Artin slopes: | $[\frac{5}{4}]$ |
Visible Swan slopes: | $[\frac{1}{4}]$ |
Means: | $\langle\frac{3}{13}\rangle$ |
Rams: | $(\frac{1}{4})$ |
Jump set: | undefined |
Roots of unity: | $12 = (13 - 1)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 13 }$. |
Canonical tower
Unramified subfield: | $\Q_{13}$ |
Relative Eisenstein polynomial: |
\( x^{13} + 143 x^{3} + 13 \)
|
Ramification polygon
Residual polynomials: | $z^{3} + 6$ |
Associated inertia: | $3$ |
Indices of inseparability: | $[3, 0]$ |
Invariants of the Galois closure
Galois degree: | $156$ |
Galois group: | $F_{13}$ (as 13T6) |
Inertia group: | $C_{13}:C_4$ (as 13T4) |
Wild inertia group: | $C_{13}$ |
Galois unramified degree: | $3$ |
Galois tame degree: | $4$ |
Galois Artin slopes: | $[\frac{5}{4}]$ |
Galois Swan slopes: | $[\frac{1}{4}]$ |
Galois mean slope: | $1.2115384615384615$ |
Galois splitting model: | not computed |