Properties

Label 11.1.11.11a1.4
Base \(\Q_{11}\)
Degree \(11\)
e \(11\)
f \(1\)
c \(11\)
Galois group $F_{11}$ (as 11T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{11} + 44 x + 11\) Copy content Toggle raw display

Invariants

Base field: $\Q_{11}$
Degree $d$: $11$
Ramification index $e$: $11$
Residue field degree $f$: $1$
Discriminant exponent $c$: $11$
Discriminant root field: $\Q_{11}(\sqrt{11\cdot 2})$
Root number: $i$
$\Aut(K/\Q_{11})$: $C_1$
This field is not Galois over $\Q_{11}.$
Visible Artin slopes:$[\frac{11}{10}]$
Visible Swan slopes:$[\frac{1}{10}]$
Means:$\langle\frac{1}{11}\rangle$
Rams:$(\frac{1}{10})$
Jump set:undefined
Roots of unity:$10 = (11 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 11 }$.

Canonical tower

Unramified subfield:$\Q_{11}$
Relative Eisenstein polynomial: \( x^{11} + 44 x + 11 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 7$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: $110$
Galois group: $F_{11}$ (as 11T4)
Inertia group: $F_{11}$ (as 11T4)
Wild inertia group: $C_{11}$
Galois unramified degree: $1$
Galois tame degree: $10$
Galois Artin slopes: $[\frac{11}{10}]$
Galois Swan slopes: $[\frac{1}{10}]$
Galois mean slope: $1.0818181818181818$
Galois splitting model:not computed