Defining polynomial
\(x^{10} + 55\)
|
Invariants
Base field: | $\Q_{11}$ |
Degree $d$: | $10$ |
Ramification index $e$: | $10$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $9$ |
Discriminant root field: | $\Q_{11}(\sqrt{11\cdot 2})$ |
Root number: | $i$ |
$\Aut(K/\Q_{11})$ $=$$\Gal(K/\Q_{11})$: | $C_{10}$ |
This field is Galois and abelian over $\Q_{11}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $10 = (11 - 1)$ |
Intermediate fields
$\Q_{11}(\sqrt{11\cdot 2})$, 11.1.5.4a1.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{11}$ |
Relative Eisenstein polynomial: |
\( x^{10} + 55 \)
|
Ramification polygon
Residual polynomials: | $z^{9} + 10 z^{8} + z^{7} + 10 z^{6} + z^{5} + 10 z^{4} + z^{3} + 10 z^{2} + z + 10$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |