Properties

Label 11.1.10.9a1.5
Base \(\Q_{11}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(9\)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 55\) Copy content Toggle raw display

Invariants

Base field: $\Q_{11}$
Degree $d$: $10$
Ramification index $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $9$
Discriminant root field: $\Q_{11}(\sqrt{11\cdot 2})$
Root number: $i$
$\Aut(K/\Q_{11})$ $=$$\Gal(K/\Q_{11})$: $C_{10}$
This field is Galois and abelian over $\Q_{11}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$10 = (11 - 1)$

Intermediate fields

$\Q_{11}(\sqrt{11\cdot 2})$, 11.1.5.4a1.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{11}$
Relative Eisenstein polynomial: \( x^{10} + 55 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{9} + 10 z^{8} + z^{7} + 10 z^{6} + z^{5} + 10 z^{4} + z^{3} + 10 z^{2} + z + 10$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $10$
Galois group: $C_{10}$ (as 10T1)
Inertia group: $C_{10}$ (as 10T1)
Wild inertia group: $C_1$
Galois unramified degree: $1$
Galois tame degree: $10$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[]$
Galois mean slope: $0.9$
Galois splitting model:$x^{10} - 110 x^{7} + 495 x^{6} - 7106 x^{5} + 39050 x^{4} - 16170 x^{3} - 210925 x^{2} + 14740 x + 901868$