# Properties

 Base field 6.6.1241125.1 Weight [2, 2, 2, 2, 2, 2] Level norm 25 Level $[25, 5, -w^{5} + w^{4} + 6w^{3} - 4w^{2} - 8w]$ Label 6.6.1241125.1-25.2-g Dimension 3 CM no Base change no

# Related objects

• L-function not available

## Base field 6.6.1241125.1

Generator $$w$$, with minimal polynomial $$x^{6} - 7x^{4} - 2x^{3} + 11x^{2} + 7x + 1$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2, 2, 2, 2, 2] Level $[25, 5, -w^{5} + w^{4} + 6w^{3} - 4w^{2} - 8w]$ Label 6.6.1241125.1-25.2-g Dimension 3 Is CM no Is base change no Parent newspace dimension 13

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{3}$$ $$\mathstrut +\mathstrut 3x^{2}$$ $$\mathstrut -\mathstrut 12x$$ $$\mathstrut -\mathstrut 5$$
Norm Prime Eigenvalue
5 $[5, 5, -2w^{5} + w^{4} + 13w^{3} - 2w^{2} - 19w - 5]$ $\phantom{-}0$
9 $[9, 3, 2w^{5} - w^{4} - 14w^{3} + 2w^{2} + 23w + 6]$ $\phantom{-}e$
11 $[11, 11, w - 1]$ $-\frac{2}{3}e^{2} - \frac{4}{3}e + \frac{16}{3}$
25 $[25, 5, w^{3} + w^{2} - 4w - 3]$ $-\frac{1}{3}e^{2} - \frac{8}{3}e + \frac{8}{3}$
29 $[29, 29, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w]$ $\phantom{-}\frac{1}{3}e^{2} + \frac{5}{3}e - \frac{5}{3}$
41 $[41, 41, w^{4} - w^{3} - 5w^{2} + 3w + 3]$ $-\frac{2}{3}e^{2} - \frac{13}{3}e + \frac{16}{3}$
49 $[49, 7, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w + 1]$ $-\frac{1}{3}e^{2} + \frac{1}{3}e + \frac{5}{3}$
59 $[59, 59, 2w^{5} - w^{4} - 14w^{3} + 2w^{2} + 24w + 7]$ $-\frac{2}{3}e^{2} - \frac{10}{3}e + \frac{10}{3}$
59 $[59, 59, -w^{5} + 8w^{3} + 2w^{2} - 15w - 8]$ $-\frac{2}{3}e^{2} - \frac{10}{3}e + \frac{10}{3}$
61 $[61, 61, w^{5} - 7w^{3} - 2w^{2} + 12w + 4]$ $-\frac{1}{3}e^{2} - \frac{5}{3}e + \frac{11}{3}$
61 $[61, 61, -w^{5} + 7w^{3} - 11w - 1]$ $-\frac{1}{3}e^{2} + \frac{1}{3}e + \frac{41}{3}$
64 $[64, 2, 2]$ $\phantom{-}\frac{2}{3}e^{2} + \frac{10}{3}e - \frac{25}{3}$
71 $[71, 71, w^{3} + w^{2} - 5w - 3]$ $\phantom{-}2e + 2$
71 $[71, 71, -3w^{5} + w^{4} + 21w^{3} - w^{2} - 33w - 9]$ $\phantom{-}2e + 2$
79 $[79, 79, -2w^{5} + w^{4} + 13w^{3} - 3w^{2} - 19w - 5]$ $\phantom{-}\frac{2}{3}e^{2} + \frac{4}{3}e - \frac{10}{3}$
81 $[81, 3, 2w^{5} - w^{4} - 13w^{3} + w^{2} + 19w + 8]$ $\phantom{-}e + 2$
89 $[89, 89, 2w^{5} - w^{4} - 13w^{3} + 2w^{2} + 20w + 7]$ $\phantom{-}\frac{2}{3}e^{2} + \frac{1}{3}e - \frac{10}{3}$
89 $[89, 89, -w^{5} + 8w^{3} + w^{2} - 16w - 5]$ $\phantom{-}e^{2} - 10$
89 $[89, 89, -3w^{5} + w^{4} + 20w^{3} - 30w - 11]$ $-e^{2} - 5e + 5$
89 $[89, 89, -w^{5} + 7w^{3} + 2w^{2} - 11w - 4]$ $\phantom{-}\frac{2}{3}e^{2} + \frac{1}{3}e - \frac{10}{3}$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, -2w^{5} + w^{4} + 13w^{3} - 2w^{2} - 19w - 5]$ $1$