Properties

Label 5.5.36497.1-32.1-a
Base field 5.5.36497.1
Weight $[2, 2, 2, 2, 2]$
Level norm $32$
Level $[32, 2, 2]$
Dimension $6$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 5.5.36497.1

Generator \(w\), with minimal polynomial \(x^5 - 2 x^4 - 3 x^3 + 5 x^2 + x - 1\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2]$
Level: $[32, 2, 2]$
Dimension: $6$
CM: no
Base change: no
Newspace dimension: $6$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^6 - 14 x^4 + 46 x^2 - 8\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w^4 - 2 w^3 - 3 w^2 + 4 w + 1]$ $\phantom{-}e$
13 $[13, 13, w^3 - 2 w^2 - 2 w + 2]$ $-\frac{1}{4} e^5 + \frac{5}{2} e^3 - \frac{7}{2} e$
23 $[23, 23, 2 w^4 - 3 w^3 - 6 w^2 + 5 w + 1]$ $\phantom{-}\frac{1}{2} e^4 - 5 e^2 + 7$
25 $[25, 5, -w^2 + 2 w + 2]$ $-e^3 + 7 e$
29 $[29, 29, -w^4 + w^3 + 4 w^2 - 3 w - 1]$ $-\frac{1}{2} e^5 + 7 e^3 - 23 e$
31 $[31, 31, w^4 - w^3 - 5 w^2 + 2 w + 4]$ $\phantom{-}\frac{1}{2} e^5 - 7 e^3 + 23 e$
32 $[32, 2, 2]$ $\phantom{-}1$
37 $[37, 37, w^4 - 2 w^3 - 2 w^2 + 4 w + 1]$ $-\frac{1}{2} e^5 + 7 e^3 - 21 e$
47 $[47, 47, w^4 - w^3 - 5 w^2 + 2 w + 3]$ $\phantom{-}\frac{1}{4} e^5 - \frac{5}{2} e^3 + \frac{7}{2} e$
47 $[47, 47, 2 w^4 - 3 w^3 - 6 w^2 + 6 w + 2]$ $\phantom{-}\frac{1}{2} e^4 - 3 e^2 - 1$
49 $[49, 7, -w^4 + 2 w^3 + 4 w^2 - 6 w - 2]$ $-\frac{1}{4} e^5 + \frac{7}{2} e^3 - \frac{21}{2} e$
53 $[53, 53, -2 w^4 + 3 w^3 + 7 w^2 - 7 w - 2]$ $-2 e$
59 $[59, 59, -2 w^4 + 3 w^3 + 6 w^2 - 5 w - 2]$ $-2$
67 $[67, 67, -w^4 + 3 w^3 + 2 w^2 - 7 w]$ $-\frac{1}{2} e^4 + 2 e^2 + 9$
67 $[67, 67, -w^4 + 3 w^3 + w^2 - 7 w + 1]$ $\phantom{-}\frac{1}{2} e^5 - 6 e^3 + 16 e$
71 $[71, 71, w^4 - 2 w^3 - 4 w^2 + 3 w + 3]$ $\phantom{-}e^4 - 8 e^2 + 6$
71 $[71, 71, -w^2 + 5]$ $\phantom{-}\frac{3}{4} e^5 - \frac{19}{2} e^3 + \frac{49}{2} e$
79 $[79, 79, 2 w^4 - 3 w^3 - 5 w^2 + 3 w + 1]$ $-e^4 + 10 e^2 - 10$
81 $[81, 3, -w^4 + 3 w^3 + 3 w^2 - 8 w - 2]$ $\phantom{-}\frac{1}{2} e^5 - 7 e^3 + 20 e$
83 $[83, 83, -3 w^4 + 3 w^3 + 10 w^2 - 2 w - 2]$ $\phantom{-}\frac{1}{2} e^4 - 5 e^2 + 5$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$32$ $[32, 2, 2]$ $-1$