# Properties

 Base field 4.4.9248.1 Weight [2, 2, 2, 2] Level norm 16 Level $[16, 4, -w^{2} + 2]$ Label 4.4.9248.1-16.4-a Dimension 1 CM no Base change yes

# Related objects

## Base field 4.4.9248.1

Generator $$w$$, with minimal polynomial $$x^{4} - 5x^{2} + 2$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2, 2, 2] Level $[16, 4, -w^{2} + 2]$ Label 4.4.9248.1-16.4-a Dimension 1 Is CM no Is base change yes Parent newspace dimension 8

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}0$
2 $[2, 2, w + 1]$ $\phantom{-}1$
13 $[13, 13, -w^{2} + w + 3]$ $\phantom{-}2$
13 $[13, 13, w^{2} + w - 3]$ $\phantom{-}2$
19 $[19, 19, -w^{3} + 3w + 1]$ $-4$
19 $[19, 19, -w^{3} + 3w - 1]$ $-4$
43 $[43, 43, -w^{2} + w - 1]$ $-4$
43 $[43, 43, w^{2} + w + 1]$ $-4$
49 $[49, 7, w^{3} + w^{2} - 6w - 3]$ $-2$
49 $[49, 7, w^{3} - w^{2} - 6w + 3]$ $-2$
53 $[53, 53, 2w^{3} - w^{2} - 9w + 3]$ $-10$
53 $[53, 53, 2w^{3} + w^{2} - 9w - 3]$ $-10$
59 $[59, 59, w^{3} - w^{2} - 4w + 1]$ $-4$
59 $[59, 59, -w^{3} - w^{2} + 4w + 1]$ $-4$
67 $[67, 67, 3w^{3} - 13w + 1]$ $-4$
67 $[67, 67, -w^{3} + w^{2} + 6w - 5]$ $-4$
81 $[81, 3, -3]$ $-14$
83 $[83, 83, -2w^{3} - w^{2} + 9w + 7]$ $-12$
83 $[83, 83, 4w^{3} - 18w - 1]$ $-12$
89 $[89, 89, -2w^{3} + 10w + 1]$ $\phantom{-}6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2,2,w]$ $-1$