Base field \(\Q(\zeta_{16})^+\)
Generator \(w\), with minimal polynomial \(x^{4} - 4 x^{2} + 2\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2, 2, 2]$ |
Level: | $[79,79,-w^{3} + w^{2} + 2 w - 5]$ |
Dimension: | $1$ |
CM: | no |
Base change: | no |
Newspace dimension: | $6$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, w]$ | $\phantom{-}0$ |
17 | $[17, 17, -w^{2} - w + 3]$ | $-2$ |
17 | $[17, 17, -w^{3} - w^{2} + 3 w + 1]$ | $-6$ |
17 | $[17, 17, w^{3} - w^{2} - 3 w + 1]$ | $\phantom{-}2$ |
17 | $[17, 17, w^{2} - w - 3]$ | $-2$ |
31 | $[31, 31, w^{3} + w^{2} - 2 w - 3]$ | $-8$ |
31 | $[31, 31, -w^{3} + w^{2} + 4 w - 1]$ | $\phantom{-}4$ |
31 | $[31, 31, w^{3} + w^{2} - 4 w - 1]$ | $\phantom{-}0$ |
31 | $[31, 31, -w^{3} + w^{2} + 2 w - 3]$ | $-8$ |
47 | $[47, 47, -2 w^{3} + w^{2} + 5 w - 1]$ | $\phantom{-}8$ |
47 | $[47, 47, 2 w^{3} + w^{2} - 6 w - 1]$ | $-8$ |
47 | $[47, 47, -2 w^{3} + w^{2} + 6 w - 1]$ | $-8$ |
47 | $[47, 47, 2 w^{3} + w^{2} - 5 w - 1]$ | $-12$ |
49 | $[49, 7, w^{2} + 1]$ | $-6$ |
49 | $[49, 7, -2 w^{2} + 3]$ | $-2$ |
79 | $[79, 79, -w^{3} - w^{2} + 4 w - 1]$ | $-8$ |
79 | $[79, 79, -w^{3} + w^{2} + 2 w - 5]$ | $\phantom{-}1$ |
79 | $[79, 79, w^{3} + w^{2} - 2 w - 5]$ | $\phantom{-}12$ |
79 | $[79, 79, w^{3} - w^{2} - 4 w - 1]$ | $-4$ |
81 | $[81, 3, -3]$ | $\phantom{-}10$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$79$ | $[79,79,-w^{3} + w^{2} + 2 w - 5]$ | $-1$ |