Properties

Label 4.4.2048.1-79.2-a
Base field \(\Q(\zeta_{16})^+\)
Weight $[2, 2, 2, 2]$
Level norm $79$
Level $[79,79,-w^3 + w^2 + 2 w - 5]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\zeta_{16})^+\)

Generator \(w\), with minimal polynomial \(x^4 - 4 x^2 + 2\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[79,79,-w^3 + w^2 + 2 w - 5]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $6$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}0$
17 $[17, 17, -w^2 - w + 3]$ $-2$
17 $[17, 17, -w^3 - w^2 + 3 w + 1]$ $-6$
17 $[17, 17, w^3 - w^2 - 3 w + 1]$ $\phantom{-}2$
17 $[17, 17, w^2 - w - 3]$ $-2$
31 $[31, 31, w^3 + w^2 - 2 w - 3]$ $-8$
31 $[31, 31, -w^3 + w^2 + 4 w - 1]$ $\phantom{-}4$
31 $[31, 31, w^3 + w^2 - 4 w - 1]$ $\phantom{-}0$
31 $[31, 31, -w^3 + w^2 + 2 w - 3]$ $-8$
47 $[47, 47, -2 w^3 + w^2 + 5 w - 1]$ $\phantom{-}8$
47 $[47, 47, 2 w^3 + w^2 - 6 w - 1]$ $-8$
47 $[47, 47, -2 w^3 + w^2 + 6 w - 1]$ $-8$
47 $[47, 47, 2 w^3 + w^2 - 5 w - 1]$ $-12$
49 $[49, 7, w^2 + 1]$ $-6$
49 $[49, 7, -2 w^2 + 3]$ $-2$
79 $[79, 79, -w^3 - w^2 + 4 w - 1]$ $-8$
79 $[79, 79, -w^3 + w^2 + 2 w - 5]$ $\phantom{-}1$
79 $[79, 79, w^3 + w^2 - 2 w - 5]$ $\phantom{-}12$
79 $[79, 79, w^3 - w^2 - 4 w - 1]$ $-4$
81 $[81, 3, -3]$ $\phantom{-}10$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$79$ $[79,79,-w^3 + w^2 + 2 w - 5]$ $-1$