Base field 4.4.1957.1
Generator \(w\), with minimal polynomial \(x^{4} - 4 x^{2} - x + 1\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2, 2, 2]$ |
Level: | $[61, 61, -w^{3} + w^{2} + w - 2]$ |
Dimension: | $6$ |
CM: | no |
Base change: | no |
Newspace dimension: | $6$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{6} - 2 x^{5} - 15 x^{4} + 26 x^{3} + 58 x^{2} - 72 x - 47\) |
Show full eigenvalues Hide large eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
3 | $[3, 3, -w^{3} + 3 w + 1]$ | $\phantom{-}e$ |
7 | $[7, 7, -w^{2} + 2]$ | $\phantom{-}\frac{1}{6} e^{5} - 2 e^{3} - \frac{2}{3} e^{2} + \frac{29}{6} e + \frac{19}{6}$ |
16 | $[16, 2, 2]$ | $-\frac{1}{6} e^{5} - \frac{1}{2} e^{4} + \frac{5}{2} e^{3} + \frac{17}{3} e^{2} - \frac{25}{3} e - \frac{61}{6}$ |
19 | $[19, 19, -w^{3} + w^{2} + 4 w]$ | $\phantom{-}\frac{1}{3} e^{5} - 5 e^{3} - \frac{1}{3} e^{2} + \frac{47}{3} e + \frac{10}{3}$ |
23 | $[23, 23, w^{3} + w^{2} - 4 w - 2]$ | $-e^{2} + e + 5$ |
27 | $[27, 3, -2 w^{3} + w^{2} + 6 w - 1]$ | $-e^{3} + 7 e + 2$ |
31 | $[31, 31, -w^{3} + 5 w]$ | $-\frac{1}{3} e^{5} + \frac{9}{2} e^{3} - \frac{1}{6} e^{2} - \frac{41}{3} e + \frac{19}{6}$ |
37 | $[37, 37, -w^{3} + 5 w + 1]$ | $\phantom{-}\frac{1}{2} e^{3} - \frac{3}{2} e^{2} - 6 e + \frac{15}{2}$ |
43 | $[43, 43, w^{2} + w - 3]$ | $-\frac{1}{3} e^{5} + \frac{1}{2} e^{4} + 4 e^{3} - \frac{31}{6} e^{2} - \frac{49}{6} e + \frac{49}{6}$ |
43 | $[43, 43, -w^{2} + 2 w + 3]$ | $-\frac{1}{3} e^{5} + 5 e^{3} + \frac{1}{3} e^{2} - \frac{47}{3} e - \frac{4}{3}$ |
47 | $[47, 47, -w^{3} + w^{2} + 2 w + 2]$ | $-\frac{1}{3} e^{5} + 4 e^{3} + \frac{4}{3} e^{2} - \frac{29}{3} e - \frac{13}{3}$ |
47 | $[47, 47, 3 w^{3} - w^{2} - 10 w - 2]$ | $-\frac{1}{2} e^{4} + \frac{9}{2} e^{2} + \frac{1}{2} e - \frac{13}{2}$ |
53 | $[53, 53, -w^{3} + w^{2} + 2 w - 3]$ | $-\frac{1}{3} e^{5} + \frac{1}{2} e^{4} + 5 e^{3} - \frac{25}{6} e^{2} - \frac{97}{6} e + \frac{7}{6}$ |
59 | $[59, 59, -2 w^{3} + w^{2} + 8 w + 1]$ | $-\frac{1}{3} e^{5} + 5 e^{3} + \frac{7}{3} e^{2} - \frac{53}{3} e - \frac{28}{3}$ |
59 | $[59, 59, w^{3} - 2 w^{2} - 3 w + 3]$ | $\phantom{-}e^{3} - e^{2} - 6 e + 5$ |
61 | $[61, 61, -w^{3} + w^{2} + w - 2]$ | $-1$ |
67 | $[67, 67, 2 w^{3} - 5 w - 2]$ | $\phantom{-}\frac{1}{6} e^{5} - 2 e^{3} - \frac{2}{3} e^{2} + \frac{29}{6} e + \frac{7}{6}$ |
71 | $[71, 71, 2 w^{2} - w - 3]$ | $\phantom{-}\frac{1}{3} e^{5} - \frac{1}{2} e^{4} - 4 e^{3} + \frac{31}{6} e^{2} + \frac{37}{6} e - \frac{49}{6}$ |
73 | $[73, 73, 2 w^{2} - w - 5]$ | $\phantom{-}\frac{1}{3} e^{5} - 4 e^{3} - \frac{4}{3} e^{2} + \frac{29}{3} e + \frac{7}{3}$ |
73 | $[73, 73, w^{3} - 2 w^{2} - 2 w + 5]$ | $\phantom{-}e^{4} - e^{3} - 10 e^{2} + 7 e + 14$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$61$ | $[61, 61, -w^{3} + w^{2} + w - 2]$ | $1$ |