# Properties

 Label 4.4.12400.1-9.2-d Base field 4.4.12400.1 Weight $[2, 2, 2, 2]$ Level norm $9$ Level $[9,3,\frac{1}{2}w^{3} + \frac{1}{2}w^{2} - \frac{7}{2}w - \frac{9}{2}]$ Dimension $4$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.12400.1

Generator $$w$$, with minimal polynomial $$x^{4} - 12x^{2} + 31$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[9,3,\frac{1}{2}w^{3} + \frac{1}{2}w^{2} - \frac{7}{2}w - \frac{9}{2}]$ Dimension: $4$ CM: no Base change: no Newspace dimension: $10$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{4} + 2x^{3} - 5x^{2} - 8x + 1$$
Norm Prime Eigenvalue
4 $[4, 2, -\frac{1}{2}w^{3} - \frac{1}{2}w^{2} + \frac{7}{2}w + \frac{11}{2}]$ $\phantom{-}e$
5 $[5, 5, -\frac{1}{2}w^{3} + w^{2} + \frac{5}{2}w - 4]$ $-e^{3} - e^{2} + 4e + 1$
5 $[5, 5, -\frac{1}{2}w^{2} - w + \frac{3}{2}]$ $\phantom{-}e^{3} + e^{2} - 5e - 3$
9 $[9, 3, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + \frac{7}{2}w - \frac{9}{2}]$ $\phantom{-}e^{3} + e^{2} - 6e - 4$
9 $[9, 3, -\frac{1}{2}w^{3} - \frac{1}{2}w^{2} + \frac{7}{2}w + \frac{9}{2}]$ $\phantom{-}1$
19 $[19, 19, -\frac{1}{2}w^{2} + w + \frac{5}{2}]$ $-e^{2} - e$
19 $[19, 19, \frac{1}{2}w^{2} + w - \frac{5}{2}]$ $\phantom{-}2e^{2} + 2e - 6$
29 $[29, 29, -\frac{3}{2}w^{2} - w + \frac{17}{2}]$ $-2e^{3} - 4e^{2} + 10e + 8$
29 $[29, 29, -\frac{3}{2}w^{2} + w + \frac{17}{2}]$ $-2e^{3} - e^{2} + 10e + 5$
31 $[31, 31, \frac{1}{2}w^{3} - \frac{7}{2}w]$ $-e^{3} - e^{2} + 8e + 2$
59 $[59, 59, \frac{1}{2}w^{2} + w - \frac{11}{2}]$ $\phantom{-}3e^{3} + 2e^{2} - 16e - 10$
59 $[59, 59, \frac{1}{2}w^{2} - w - \frac{11}{2}]$ $-2e^{3} + 14e + 3$
61 $[61, 61, -\frac{1}{2}w^{3} + w^{2} + \frac{7}{2}w - 5]$ $-e^{2} + e - 2$
61 $[61, 61, \frac{1}{2}w^{3} + w^{2} - \frac{7}{2}w - 5]$ $-e^{2} - 5e + 4$
71 $[71, 71, -\frac{1}{2}w^{3} - 2w^{2} + \frac{11}{2}w + 13]$ $\phantom{-}e^{3} - 3e + 5$
71 $[71, 71, \frac{3}{2}w^{3} + 2w^{2} - \frac{23}{2}w - 18]$ $-e^{3} - 5e^{2} + 3e + 15$
79 $[79, 79, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - \frac{7}{2}w - \frac{1}{2}]$ $-e^{3} + e^{2} + 7e + 1$
79 $[79, 79, -2w^{2} + w + 10]$ $\phantom{-}2e^{2} - 3e - 16$
79 $[79, 79, 2w^{2} + w - 10]$ $-e^{3} - 2e^{2} + 4$
79 $[79, 79, \frac{1}{2}w^{3} - \frac{1}{2}w^{2} - \frac{7}{2}w + \frac{1}{2}]$ $\phantom{-}2e^{2} + e - 13$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$9$ $[9,3,\frac{1}{2}w^{3} + \frac{1}{2}w^{2} - \frac{7}{2}w - \frac{9}{2}]$ $-1$