gp: [N,k,chi] = [97,2,Mod(6,97)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(97, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("97.6");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 12 \zeta_{12} ζ 1 2 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 97 Z ) × \left(\mathbb{Z}/97\mathbb{Z}\right)^\times ( Z / 9 7 Z ) × .
n n n
5 5 5
χ ( n ) \chi(n) χ ( n )
ζ 12 \zeta_{12} ζ 1 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 2 + 3 T 2 + 3 T_{2}^{2} + 3T_{2} + 3 T 2 2 + 3 T 2 + 3
T2^2 + 3*T2 + 3
acting on S 2 n e w ( 97 , [ χ ] ) S_{2}^{\mathrm{new}}(97, [\chi]) S 2 n e w ( 9 7 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 3 T + 3 ) 2 (T^{2} + 3 T + 3)^{2} ( T 2 + 3 T + 3 ) 2
(T^2 + 3*T + 3)^2
3 3 3
T 4 + 6 T 3 + ⋯ + 4 T^{4} + 6 T^{3} + \cdots + 4 T 4 + 6 T 3 + ⋯ + 4
T^4 + 6*T^3 + 14*T^2 + 12*T + 4
5 5 5
T 4 + 6 T 3 + ⋯ + 9 T^{4} + 6 T^{3} + \cdots + 9 T 4 + 6 T 3 + ⋯ + 9
T^4 + 6*T^3 + 9*T^2 + 9
7 7 7
T 4 + 2 T 3 + ⋯ + 4 T^{4} + 2 T^{3} + \cdots + 4 T 4 + 2 T 3 + ⋯ + 4
T^4 + 2*T^3 + 2*T^2 + 4*T + 4
11 11 1 1
( T 2 + 6 T + 12 ) 2 (T^{2} + 6 T + 12)^{2} ( T 2 + 6 T + 1 2 ) 2
(T^2 + 6*T + 12)^2
13 13 1 3
T 4 + 4 T 3 + ⋯ + 1 T^{4} + 4 T^{3} + \cdots + 1 T 4 + 4 T 3 + ⋯ + 1
T^4 + 4*T^3 + 5*T^2 + 2*T + 1
17 17 1 7
T 4 + 12 T 3 + ⋯ + 81 T^{4} + 12 T^{3} + \cdots + 81 T 4 + 1 2 T 3 + ⋯ + 8 1
T^4 + 12*T^3 + 45*T^2 + 54*T + 81
19 19 1 9
T 4 + 8 T 3 + ⋯ + 4 T^{4} + 8 T^{3} + \cdots + 4 T 4 + 8 T 3 + ⋯ + 4
T^4 + 8*T^3 + 32*T^2 + 16*T + 4
23 23 2 3
T 4 + 12 T 3 + ⋯ + 5184 T^{4} + 12 T^{3} + \cdots + 5184 T 4 + 1 2 T 3 + ⋯ + 5 1 8 4
T^4 + 12*T^3 + 72*T^2 + 864*T + 5184
29 29 2 9
T 4 − 6 T 3 + ⋯ + 36 T^{4} - 6 T^{3} + \cdots + 36 T 4 − 6 T 3 + ⋯ + 3 6
T^4 - 6*T^3 + 90*T^2 - 108*T + 36
31 31 3 1
T 4 + 18 T 3 + ⋯ + 676 T^{4} + 18 T^{3} + \cdots + 676 T 4 + 1 8 T 3 + ⋯ + 6 7 6
T^4 + 18*T^3 + 134*T^2 + 468*T + 676
37 37 3 7
T 4 + 2 T 3 + ⋯ + 2209 T^{4} + 2 T^{3} + \cdots + 2209 T 4 + 2 T 3 + ⋯ + 2 2 0 9
T^4 + 2*T^3 + 101*T^2 + 940*T + 2209
41 41 4 1
T 4 + 18 T 3 + ⋯ + 2916 T^{4} + 18 T^{3} + \cdots + 2916 T 4 + 1 8 T 3 + ⋯ + 2 9 1 6
T^4 + 18*T^3 + 162*T^2 + 972*T + 2916
43 43 4 3
T 4 + 6 T 3 + ⋯ + 324 T^{4} + 6 T^{3} + \cdots + 324 T 4 + 6 T 3 + ⋯ + 3 2 4
T^4 + 6*T^3 + 54*T^2 - 108*T + 324
47 47 4 7
( T 2 − 12 T − 12 ) 2 (T^{2} - 12 T - 12)^{2} ( T 2 − 1 2 T − 1 2 ) 2
(T^2 - 12*T - 12)^2
53 53 5 3
T 4 − 9 T 2 + 81 T^{4} - 9T^{2} + 81 T 4 − 9 T 2 + 8 1
T^4 - 9*T^2 + 81
59 59 5 9
T 4 + 12 T 3 + ⋯ + 576 T^{4} + 12 T^{3} + \cdots + 576 T 4 + 1 2 T 3 + ⋯ + 5 7 6
T^4 + 12*T^3 + 72*T^2 + 288*T + 576
61 61 6 1
T 4 + 3 T 2 + 9 T^{4} + 3T^{2} + 9 T 4 + 3 T 2 + 9
T^4 + 3*T^2 + 9
67 67 6 7
T 4 + 4 T 3 + ⋯ + 16 T^{4} + 4 T^{3} + \cdots + 16 T 4 + 4 T 3 + ⋯ + 1 6
T^4 + 4*T^3 + 8*T^2 - 16*T + 16
71 71 7 1
T 4 − 18 T 3 + ⋯ + 6084 T^{4} - 18 T^{3} + \cdots + 6084 T 4 − 1 8 T 3 + ⋯ + 6 0 8 4
T^4 - 18*T^3 + 306*T^2 - 2340*T + 6084
73 73 7 3
T 4 + 8 T 3 + ⋯ + 8464 T^{4} + 8 T^{3} + \cdots + 8464 T 4 + 8 T 3 + ⋯ + 8 4 6 4
T^4 + 8*T^3 + 156*T^2 - 736*T + 8464
79 79 7 9
( T 2 + 36 ) 2 (T^{2} + 36)^{2} ( T 2 + 3 6 ) 2
(T^2 + 36)^2
83 83 8 3
T 4 − 18 T 3 + ⋯ + 6084 T^{4} - 18 T^{3} + \cdots + 6084 T 4 − 1 8 T 3 + ⋯ + 6 0 8 4
T^4 - 18*T^3 + 306*T^2 - 2340*T + 6084
89 89 8 9
T 4 + 42 T 2 + 9 T^{4} + 42T^{2} + 9 T 4 + 4 2 T 2 + 9
T^4 + 42*T^2 + 9
97 97 9 7
( T 2 + 18 T + 97 ) 2 (T^{2} + 18 T + 97)^{2} ( T 2 + 1 8 T + 9 7 ) 2
(T^2 + 18*T + 97)^2
show more
show less