Properties

Label 97.2.g.a
Level 9797
Weight 22
Character orbit 97.g
Analytic conductor 0.7750.775
Analytic rank 11
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [97,2,Mod(6,97)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("97.6"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 97 97
Weight: k k == 2 2
Character orbit: [χ][\chi] == 97.g (of order 1212, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7745488996060.774548899606
Analytic rank: 11
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ1222)q2+(ζ123+ζ122+2)q3+(ζ122+1)q4+(ζ123ζ122+1)q5+(2ζ1233ζ122++3)q6++(12ζ123+2ζ122+4)q99+O(q100) q + (\zeta_{12}^{2} - 2) q^{2} + ( - \zeta_{12}^{3} + \zeta_{12}^{2} + \cdots - 2) q^{3} + ( - \zeta_{12}^{2} + 1) q^{4} + (\zeta_{12}^{3} - \zeta_{12}^{2} + \cdots - 1) q^{5} + (2 \zeta_{12}^{3} - 3 \zeta_{12}^{2} + \cdots + 3) q^{6}+ \cdots + ( - 12 \zeta_{12}^{3} + 2 \zeta_{12}^{2} + \cdots - 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q6q26q3+2q46q5+6q62q7+2q9+12q1012q114q13+6q14+6q15+10q1612q178q196q20+8q21+24q2212q23+12q99+O(q100) 4 q - 6 q^{2} - 6 q^{3} + 2 q^{4} - 6 q^{5} + 6 q^{6} - 2 q^{7} + 2 q^{9} + 12 q^{10} - 12 q^{11} - 4 q^{13} + 6 q^{14} + 6 q^{15} + 10 q^{16} - 12 q^{17} - 8 q^{19} - 6 q^{20} + 8 q^{21} + 24 q^{22} - 12 q^{23}+ \cdots - 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/97Z)×\left(\mathbb{Z}/97\mathbb{Z}\right)^\times.

nn 55
χ(n)\chi(n) ζ12\zeta_{12}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
6.1
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
−1.50000 + 0.866025i −0.633975 + 0.366025i 0.500000 0.866025i −3.23205 0.866025i 0.633975 1.09808i 0.366025 1.36603i 1.73205i −1.23205 + 2.13397i 5.59808 1.50000i
16.1 −1.50000 0.866025i −2.36603 1.36603i 0.500000 + 0.866025i 0.232051 + 0.866025i 2.36603 + 4.09808i −1.36603 + 0.366025i 1.73205i 2.23205 + 3.86603i 0.401924 1.50000i
81.1 −1.50000 0.866025i −0.633975 0.366025i 0.500000 + 0.866025i −3.23205 + 0.866025i 0.633975 + 1.09808i 0.366025 + 1.36603i 1.73205i −1.23205 2.13397i 5.59808 + 1.50000i
91.1 −1.50000 + 0.866025i −2.36603 + 1.36603i 0.500000 0.866025i 0.232051 0.866025i 2.36603 4.09808i −1.36603 0.366025i 1.73205i 2.23205 3.86603i 0.401924 + 1.50000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
97.g even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 97.2.g.a 4
3.b odd 2 1 873.2.be.c 4
97.g even 12 1 inner 97.2.g.a 4
97.i even 24 2 9409.2.a.b 4
291.m odd 12 1 873.2.be.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
97.2.g.a 4 1.a even 1 1 trivial
97.2.g.a 4 97.g even 12 1 inner
873.2.be.c 4 3.b odd 2 1
873.2.be.c 4 291.m odd 12 1
9409.2.a.b 4 97.i even 24 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+3T2+3 T_{2}^{2} + 3T_{2} + 3 acting on S2new(97,[χ])S_{2}^{\mathrm{new}}(97, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+3T+3)2 (T^{2} + 3 T + 3)^{2} Copy content Toggle raw display
33 T4+6T3++4 T^{4} + 6 T^{3} + \cdots + 4 Copy content Toggle raw display
55 T4+6T3++9 T^{4} + 6 T^{3} + \cdots + 9 Copy content Toggle raw display
77 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
1111 (T2+6T+12)2 (T^{2} + 6 T + 12)^{2} Copy content Toggle raw display
1313 T4+4T3++1 T^{4} + 4 T^{3} + \cdots + 1 Copy content Toggle raw display
1717 T4+12T3++81 T^{4} + 12 T^{3} + \cdots + 81 Copy content Toggle raw display
1919 T4+8T3++4 T^{4} + 8 T^{3} + \cdots + 4 Copy content Toggle raw display
2323 T4+12T3++5184 T^{4} + 12 T^{3} + \cdots + 5184 Copy content Toggle raw display
2929 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
3131 T4+18T3++676 T^{4} + 18 T^{3} + \cdots + 676 Copy content Toggle raw display
3737 T4+2T3++2209 T^{4} + 2 T^{3} + \cdots + 2209 Copy content Toggle raw display
4141 T4+18T3++2916 T^{4} + 18 T^{3} + \cdots + 2916 Copy content Toggle raw display
4343 T4+6T3++324 T^{4} + 6 T^{3} + \cdots + 324 Copy content Toggle raw display
4747 (T212T12)2 (T^{2} - 12 T - 12)^{2} Copy content Toggle raw display
5353 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
5959 T4+12T3++576 T^{4} + 12 T^{3} + \cdots + 576 Copy content Toggle raw display
6161 T4+3T2+9 T^{4} + 3T^{2} + 9 Copy content Toggle raw display
6767 T4+4T3++16 T^{4} + 4 T^{3} + \cdots + 16 Copy content Toggle raw display
7171 T418T3++6084 T^{4} - 18 T^{3} + \cdots + 6084 Copy content Toggle raw display
7373 T4+8T3++8464 T^{4} + 8 T^{3} + \cdots + 8464 Copy content Toggle raw display
7979 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
8383 T418T3++6084 T^{4} - 18 T^{3} + \cdots + 6084 Copy content Toggle raw display
8989 T4+42T2+9 T^{4} + 42T^{2} + 9 Copy content Toggle raw display
9797 (T2+18T+97)2 (T^{2} + 18 T + 97)^{2} Copy content Toggle raw display
show more
show less