Properties

Label 954.2.c.e
Level $954$
Weight $2$
Character orbit 954.c
Analytic conductor $7.618$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [954,2,Mod(847,954)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(954, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("954.847");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 954 = 2 \cdot 3^{2} \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 954.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.61772835283\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 106)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{2} - q^{4} + i q^{5} + 4 q^{7} + i q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q - i q^{2} - q^{4} + i q^{5} + 4 q^{7} + i q^{8} + q^{10} + q^{11} - 4 q^{13} - 4 i q^{14} + q^{16} + 3 q^{17} + 8 i q^{19} - i q^{20} - i q^{22} - 3 i q^{23} + 4 q^{25} + 4 i q^{26} - 4 q^{28} + 4 q^{29} + 3 i q^{31} - i q^{32} - 3 i q^{34} + 4 i q^{35} - 4 q^{37} + 8 q^{38} - q^{40} + 6 i q^{41} + 9 q^{43} - q^{44} - 3 q^{46} - 6 q^{47} + 9 q^{49} - 4 i q^{50} + 4 q^{52} + ( - 7 i + 2) q^{53} + i q^{55} + 4 i q^{56} - 4 i q^{58} + 15 q^{59} - 2 i q^{61} + 3 q^{62} - q^{64} - 4 i q^{65} + 2 i q^{67} - 3 q^{68} + 4 q^{70} - 8 i q^{71} - 14 i q^{73} + 4 i q^{74} - 8 i q^{76} + 4 q^{77} - 11 i q^{79} + i q^{80} + 6 q^{82} + 12 i q^{83} + 3 i q^{85} - 9 i q^{86} + i q^{88} + 11 q^{89} - 16 q^{91} + 3 i q^{92} + 6 i q^{94} - 8 q^{95} - q^{97} - 9 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} + 8 q^{7} + 2 q^{10} + 2 q^{11} - 8 q^{13} + 2 q^{16} + 6 q^{17} + 8 q^{25} - 8 q^{28} + 8 q^{29} - 8 q^{37} + 16 q^{38} - 2 q^{40} + 18 q^{43} - 2 q^{44} - 6 q^{46} - 12 q^{47} + 18 q^{49} + 8 q^{52} + 4 q^{53} + 30 q^{59} + 6 q^{62} - 2 q^{64} - 6 q^{68} + 8 q^{70} + 8 q^{77} + 12 q^{82} + 22 q^{89} - 32 q^{91} - 16 q^{95} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/954\mathbb{Z}\right)^\times\).

\(n\) \(55\) \(425\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
847.1
1.00000i
1.00000i
1.00000i 0 −1.00000 1.00000i 0 4.00000 1.00000i 0 1.00000
847.2 1.00000i 0 −1.00000 1.00000i 0 4.00000 1.00000i 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
53.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 954.2.c.e 2
3.b odd 2 1 106.2.b.b 2
12.b even 2 1 848.2.c.a 2
15.d odd 2 1 2650.2.c.b 2
15.e even 4 1 2650.2.d.a 2
15.e even 4 1 2650.2.d.d 2
53.b even 2 1 inner 954.2.c.e 2
159.d odd 2 1 106.2.b.b 2
159.f even 4 1 5618.2.a.e 1
159.f even 4 1 5618.2.a.g 1
636.g even 2 1 848.2.c.a 2
795.b odd 2 1 2650.2.c.b 2
795.m even 4 1 2650.2.d.a 2
795.m even 4 1 2650.2.d.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
106.2.b.b 2 3.b odd 2 1
106.2.b.b 2 159.d odd 2 1
848.2.c.a 2 12.b even 2 1
848.2.c.a 2 636.g even 2 1
954.2.c.e 2 1.a even 1 1 trivial
954.2.c.e 2 53.b even 2 1 inner
2650.2.c.b 2 15.d odd 2 1
2650.2.c.b 2 795.b odd 2 1
2650.2.d.a 2 15.e even 4 1
2650.2.d.a 2 795.m even 4 1
2650.2.d.d 2 15.e even 4 1
2650.2.d.d 2 795.m even 4 1
5618.2.a.e 1 159.f even 4 1
5618.2.a.g 1 159.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(954, [\chi])\):

\( T_{5}^{2} + 1 \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T - 4)^{2} \) Copy content Toggle raw display
$11$ \( (T - 1)^{2} \) Copy content Toggle raw display
$13$ \( (T + 4)^{2} \) Copy content Toggle raw display
$17$ \( (T - 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 64 \) Copy content Toggle raw display
$23$ \( T^{2} + 9 \) Copy content Toggle raw display
$29$ \( (T - 4)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 9 \) Copy content Toggle raw display
$37$ \( (T + 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 36 \) Copy content Toggle raw display
$43$ \( (T - 9)^{2} \) Copy content Toggle raw display
$47$ \( (T + 6)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 4T + 53 \) Copy content Toggle raw display
$59$ \( (T - 15)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 4 \) Copy content Toggle raw display
$67$ \( T^{2} + 4 \) Copy content Toggle raw display
$71$ \( T^{2} + 64 \) Copy content Toggle raw display
$73$ \( T^{2} + 196 \) Copy content Toggle raw display
$79$ \( T^{2} + 121 \) Copy content Toggle raw display
$83$ \( T^{2} + 144 \) Copy content Toggle raw display
$89$ \( (T - 11)^{2} \) Copy content Toggle raw display
$97$ \( (T + 1)^{2} \) Copy content Toggle raw display
show more
show less