Properties

Label 7381.2.a.u.1.31
Level $7381$
Weight $2$
Character 7381.1
Self dual yes
Analytic conductor $58.938$
Analytic rank $0$
Dimension $64$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7381,2,Mod(1,7381)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7381, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7381.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7381 = 11^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7381.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(58.9375817319\)
Analytic rank: \(0\)
Dimension: \(64\)
Twist minimal: no (minimal twist has level 671)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.31
Character \(\chi\) \(=\) 7381.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.160201 q^{2} -1.99014 q^{3} -1.97434 q^{4} +0.944293 q^{5} +0.318822 q^{6} -2.45884 q^{7} +0.636692 q^{8} +0.960669 q^{9} +O(q^{10})\) \(q-0.160201 q^{2} -1.99014 q^{3} -1.97434 q^{4} +0.944293 q^{5} +0.318822 q^{6} -2.45884 q^{7} +0.636692 q^{8} +0.960669 q^{9} -0.151277 q^{10} +3.92921 q^{12} +1.49006 q^{13} +0.393909 q^{14} -1.87928 q^{15} +3.84667 q^{16} +4.43934 q^{17} -0.153900 q^{18} +8.13002 q^{19} -1.86435 q^{20} +4.89345 q^{21} +2.72360 q^{23} -1.26711 q^{24} -4.10831 q^{25} -0.238708 q^{26} +4.05856 q^{27} +4.85458 q^{28} +0.129575 q^{29} +0.301062 q^{30} -6.71223 q^{31} -1.88962 q^{32} -0.711185 q^{34} -2.32187 q^{35} -1.89668 q^{36} +9.55837 q^{37} -1.30243 q^{38} -2.96543 q^{39} +0.601224 q^{40} -2.01868 q^{41} -0.783934 q^{42} +5.42082 q^{43} +0.907154 q^{45} -0.436324 q^{46} +12.1877 q^{47} -7.65543 q^{48} -0.954093 q^{49} +0.658155 q^{50} -8.83492 q^{51} -2.94187 q^{52} -4.25955 q^{53} -0.650184 q^{54} -1.56552 q^{56} -16.1799 q^{57} -0.0207581 q^{58} -1.18350 q^{59} +3.71033 q^{60} -1.00000 q^{61} +1.07530 q^{62} -2.36214 q^{63} -7.39063 q^{64} +1.40705 q^{65} -5.70593 q^{67} -8.76474 q^{68} -5.42036 q^{69} +0.371965 q^{70} -13.8714 q^{71} +0.611650 q^{72} -6.56559 q^{73} -1.53126 q^{74} +8.17613 q^{75} -16.0514 q^{76} +0.475064 q^{78} -1.69050 q^{79} +3.63239 q^{80} -10.9591 q^{81} +0.323394 q^{82} -0.566676 q^{83} -9.66131 q^{84} +4.19204 q^{85} -0.868419 q^{86} -0.257874 q^{87} -2.01271 q^{89} -0.145327 q^{90} -3.66382 q^{91} -5.37731 q^{92} +13.3583 q^{93} -1.95248 q^{94} +7.67712 q^{95} +3.76062 q^{96} +9.22607 q^{97} +0.152847 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 5 q^{2} + 19 q^{3} + 73 q^{4} + 21 q^{5} + q^{6} - 6 q^{7} - 3 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q - 5 q^{2} + 19 q^{3} + 73 q^{4} + 21 q^{5} + q^{6} - 6 q^{7} - 3 q^{8} + 81 q^{9} + 4 q^{10} + 41 q^{12} + q^{13} + 41 q^{14} + 28 q^{15} + 107 q^{16} - 13 q^{17} - 38 q^{18} + q^{19} + 65 q^{20} - q^{21} + 52 q^{23} - 3 q^{24} + 87 q^{25} + 37 q^{26} + 88 q^{27} + q^{28} - 19 q^{29} + 19 q^{30} + 45 q^{31} + 24 q^{32} - 23 q^{34} - 10 q^{35} + 146 q^{36} + 26 q^{37} - 4 q^{38} + 6 q^{39} - 84 q^{40} + 12 q^{41} + 28 q^{42} - 5 q^{43} + 71 q^{45} + 5 q^{46} + 63 q^{47} + 85 q^{48} + 78 q^{49} - 14 q^{50} - 22 q^{51} + 24 q^{52} + 86 q^{53} + 114 q^{54} + 119 q^{56} + 29 q^{57} + q^{58} + 119 q^{59} - 22 q^{60} - 64 q^{61} - 13 q^{62} + 28 q^{63} + 135 q^{64} + 30 q^{65} + 2 q^{67} - 59 q^{68} + 63 q^{69} - 2 q^{70} + 126 q^{71} - 48 q^{72} - 8 q^{73} + 27 q^{74} + 107 q^{75} + 82 q^{76} - 13 q^{78} + 5 q^{79} + 119 q^{80} + 96 q^{81} - 27 q^{82} - 14 q^{83} - 182 q^{84} + 52 q^{85} + 60 q^{86} + 8 q^{87} + 59 q^{89} + 45 q^{90} + 83 q^{91} + 111 q^{92} - 7 q^{93} - 21 q^{94} + 26 q^{95} + 86 q^{96} - 39 q^{97} + 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.160201 −0.113279 −0.0566395 0.998395i \(-0.518039\pi\)
−0.0566395 + 0.998395i \(0.518039\pi\)
\(3\) −1.99014 −1.14901 −0.574505 0.818501i \(-0.694805\pi\)
−0.574505 + 0.818501i \(0.694805\pi\)
\(4\) −1.97434 −0.987168
\(5\) 0.944293 0.422301 0.211150 0.977454i \(-0.432279\pi\)
0.211150 + 0.977454i \(0.432279\pi\)
\(6\) 0.318822 0.130159
\(7\) −2.45884 −0.929355 −0.464678 0.885480i \(-0.653830\pi\)
−0.464678 + 0.885480i \(0.653830\pi\)
\(8\) 0.636692 0.225105
\(9\) 0.960669 0.320223
\(10\) −0.151277 −0.0478378
\(11\) 0 0
\(12\) 3.92921 1.13427
\(13\) 1.49006 0.413268 0.206634 0.978418i \(-0.433749\pi\)
0.206634 + 0.978418i \(0.433749\pi\)
\(14\) 0.393909 0.105276
\(15\) −1.87928 −0.485228
\(16\) 3.84667 0.961668
\(17\) 4.43934 1.07670 0.538349 0.842722i \(-0.319048\pi\)
0.538349 + 0.842722i \(0.319048\pi\)
\(18\) −0.153900 −0.0362746
\(19\) 8.13002 1.86515 0.932577 0.360972i \(-0.117555\pi\)
0.932577 + 0.360972i \(0.117555\pi\)
\(20\) −1.86435 −0.416882
\(21\) 4.89345 1.06784
\(22\) 0 0
\(23\) 2.72360 0.567911 0.283955 0.958837i \(-0.408353\pi\)
0.283955 + 0.958837i \(0.408353\pi\)
\(24\) −1.26711 −0.258647
\(25\) −4.10831 −0.821662
\(26\) −0.238708 −0.0468146
\(27\) 4.05856 0.781070
\(28\) 4.85458 0.917430
\(29\) 0.129575 0.0240616 0.0120308 0.999928i \(-0.496170\pi\)
0.0120308 + 0.999928i \(0.496170\pi\)
\(30\) 0.301062 0.0549661
\(31\) −6.71223 −1.20555 −0.602776 0.797911i \(-0.705939\pi\)
−0.602776 + 0.797911i \(0.705939\pi\)
\(32\) −1.88962 −0.334041
\(33\) 0 0
\(34\) −0.711185 −0.121967
\(35\) −2.32187 −0.392467
\(36\) −1.89668 −0.316114
\(37\) 9.55837 1.57139 0.785693 0.618616i \(-0.212306\pi\)
0.785693 + 0.618616i \(0.212306\pi\)
\(38\) −1.30243 −0.211283
\(39\) −2.96543 −0.474849
\(40\) 0.601224 0.0950618
\(41\) −2.01868 −0.315265 −0.157633 0.987498i \(-0.550386\pi\)
−0.157633 + 0.987498i \(0.550386\pi\)
\(42\) −0.783934 −0.120964
\(43\) 5.42082 0.826667 0.413333 0.910580i \(-0.364364\pi\)
0.413333 + 0.910580i \(0.364364\pi\)
\(44\) 0 0
\(45\) 0.907154 0.135230
\(46\) −0.436324 −0.0643324
\(47\) 12.1877 1.77776 0.888880 0.458140i \(-0.151484\pi\)
0.888880 + 0.458140i \(0.151484\pi\)
\(48\) −7.65543 −1.10497
\(49\) −0.954093 −0.136299
\(50\) 0.658155 0.0930771
\(51\) −8.83492 −1.23714
\(52\) −2.94187 −0.407965
\(53\) −4.25955 −0.585094 −0.292547 0.956251i \(-0.594503\pi\)
−0.292547 + 0.956251i \(0.594503\pi\)
\(54\) −0.650184 −0.0884789
\(55\) 0 0
\(56\) −1.56552 −0.209202
\(57\) −16.1799 −2.14308
\(58\) −0.0207581 −0.00272567
\(59\) −1.18350 −0.154078 −0.0770390 0.997028i \(-0.524547\pi\)
−0.0770390 + 0.997028i \(0.524547\pi\)
\(60\) 3.71033 0.479001
\(61\) −1.00000 −0.128037
\(62\) 1.07530 0.136564
\(63\) −2.36214 −0.297601
\(64\) −7.39063 −0.923828
\(65\) 1.40705 0.174523
\(66\) 0 0
\(67\) −5.70593 −0.697090 −0.348545 0.937292i \(-0.613324\pi\)
−0.348545 + 0.937292i \(0.613324\pi\)
\(68\) −8.76474 −1.06288
\(69\) −5.42036 −0.652535
\(70\) 0.371965 0.0444583
\(71\) −13.8714 −1.64624 −0.823118 0.567870i \(-0.807768\pi\)
−0.823118 + 0.567870i \(0.807768\pi\)
\(72\) 0.611650 0.0720837
\(73\) −6.56559 −0.768444 −0.384222 0.923241i \(-0.625530\pi\)
−0.384222 + 0.923241i \(0.625530\pi\)
\(74\) −1.53126 −0.178005
\(75\) 8.17613 0.944098
\(76\) −16.0514 −1.84122
\(77\) 0 0
\(78\) 0.475064 0.0537904
\(79\) −1.69050 −0.190196 −0.0950978 0.995468i \(-0.530316\pi\)
−0.0950978 + 0.995468i \(0.530316\pi\)
\(80\) 3.63239 0.406113
\(81\) −10.9591 −1.21768
\(82\) 0.323394 0.0357129
\(83\) −0.566676 −0.0622008 −0.0311004 0.999516i \(-0.509901\pi\)
−0.0311004 + 0.999516i \(0.509901\pi\)
\(84\) −9.66131 −1.05414
\(85\) 4.19204 0.454690
\(86\) −0.868419 −0.0936440
\(87\) −0.257874 −0.0276470
\(88\) 0 0
\(89\) −2.01271 −0.213347 −0.106673 0.994294i \(-0.534020\pi\)
−0.106673 + 0.994294i \(0.534020\pi\)
\(90\) −0.145327 −0.0153188
\(91\) −3.66382 −0.384072
\(92\) −5.37731 −0.560623
\(93\) 13.3583 1.38519
\(94\) −1.95248 −0.201383
\(95\) 7.67712 0.787656
\(96\) 3.76062 0.383817
\(97\) 9.22607 0.936765 0.468383 0.883526i \(-0.344837\pi\)
0.468383 + 0.883526i \(0.344837\pi\)
\(98\) 0.152847 0.0154398
\(99\) 0 0
\(100\) 8.11118 0.811118
\(101\) 17.0193 1.69349 0.846744 0.532001i \(-0.178560\pi\)
0.846744 + 0.532001i \(0.178560\pi\)
\(102\) 1.41536 0.140142
\(103\) 16.9074 1.66594 0.832969 0.553320i \(-0.186639\pi\)
0.832969 + 0.553320i \(0.186639\pi\)
\(104\) 0.948707 0.0930284
\(105\) 4.62085 0.450949
\(106\) 0.682383 0.0662789
\(107\) 1.43952 0.139163 0.0695817 0.997576i \(-0.477834\pi\)
0.0695817 + 0.997576i \(0.477834\pi\)
\(108\) −8.01296 −0.771047
\(109\) −7.46538 −0.715054 −0.357527 0.933903i \(-0.616380\pi\)
−0.357527 + 0.933903i \(0.616380\pi\)
\(110\) 0 0
\(111\) −19.0225 −1.80554
\(112\) −9.45836 −0.893731
\(113\) −6.21092 −0.584275 −0.292137 0.956376i \(-0.594366\pi\)
−0.292137 + 0.956376i \(0.594366\pi\)
\(114\) 2.59203 0.242766
\(115\) 2.57188 0.239829
\(116\) −0.255825 −0.0237528
\(117\) 1.43145 0.132338
\(118\) 0.189597 0.0174538
\(119\) −10.9156 −1.00063
\(120\) −1.19652 −0.109227
\(121\) 0 0
\(122\) 0.160201 0.0145039
\(123\) 4.01746 0.362243
\(124\) 13.2522 1.19008
\(125\) −8.60092 −0.769289
\(126\) 0.378416 0.0337120
\(127\) 3.89454 0.345585 0.172792 0.984958i \(-0.444721\pi\)
0.172792 + 0.984958i \(0.444721\pi\)
\(128\) 4.96323 0.438692
\(129\) −10.7882 −0.949848
\(130\) −0.225411 −0.0197698
\(131\) 5.02079 0.438669 0.219334 0.975650i \(-0.429611\pi\)
0.219334 + 0.975650i \(0.429611\pi\)
\(132\) 0 0
\(133\) −19.9904 −1.73339
\(134\) 0.914094 0.0789657
\(135\) 3.83247 0.329847
\(136\) 2.82649 0.242369
\(137\) 16.9186 1.44545 0.722726 0.691135i \(-0.242889\pi\)
0.722726 + 0.691135i \(0.242889\pi\)
\(138\) 0.868346 0.0739186
\(139\) −22.8309 −1.93649 −0.968244 0.250007i \(-0.919567\pi\)
−0.968244 + 0.250007i \(0.919567\pi\)
\(140\) 4.58415 0.387431
\(141\) −24.2553 −2.04266
\(142\) 2.22221 0.186484
\(143\) 0 0
\(144\) 3.69538 0.307948
\(145\) 0.122357 0.0101612
\(146\) 1.05181 0.0870486
\(147\) 1.89878 0.156609
\(148\) −18.8714 −1.55122
\(149\) 8.87344 0.726941 0.363470 0.931606i \(-0.381592\pi\)
0.363470 + 0.931606i \(0.381592\pi\)
\(150\) −1.30982 −0.106946
\(151\) 5.51819 0.449064 0.224532 0.974467i \(-0.427915\pi\)
0.224532 + 0.974467i \(0.427915\pi\)
\(152\) 5.17631 0.419854
\(153\) 4.26474 0.344783
\(154\) 0 0
\(155\) −6.33831 −0.509105
\(156\) 5.85475 0.468755
\(157\) −14.1464 −1.12900 −0.564502 0.825431i \(-0.690932\pi\)
−0.564502 + 0.825431i \(0.690932\pi\)
\(158\) 0.270819 0.0215452
\(159\) 8.47711 0.672278
\(160\) −1.78436 −0.141066
\(161\) −6.69691 −0.527791
\(162\) 1.75566 0.137938
\(163\) 9.87155 0.773200 0.386600 0.922248i \(-0.373649\pi\)
0.386600 + 0.922248i \(0.373649\pi\)
\(164\) 3.98555 0.311220
\(165\) 0 0
\(166\) 0.0907820 0.00704605
\(167\) 23.0318 1.78225 0.891127 0.453754i \(-0.149915\pi\)
0.891127 + 0.453754i \(0.149915\pi\)
\(168\) 3.11562 0.240375
\(169\) −10.7797 −0.829210
\(170\) −0.671568 −0.0515069
\(171\) 7.81026 0.597265
\(172\) −10.7025 −0.816059
\(173\) −17.3046 −1.31565 −0.657824 0.753172i \(-0.728523\pi\)
−0.657824 + 0.753172i \(0.728523\pi\)
\(174\) 0.0413116 0.00313182
\(175\) 10.1017 0.763616
\(176\) 0 0
\(177\) 2.35533 0.177037
\(178\) 0.322437 0.0241677
\(179\) −0.174246 −0.0130238 −0.00651189 0.999979i \(-0.502073\pi\)
−0.00651189 + 0.999979i \(0.502073\pi\)
\(180\) −1.79103 −0.133495
\(181\) −11.4415 −0.850442 −0.425221 0.905090i \(-0.639804\pi\)
−0.425221 + 0.905090i \(0.639804\pi\)
\(182\) 0.586946 0.0435074
\(183\) 1.99014 0.147116
\(184\) 1.73410 0.127839
\(185\) 9.02591 0.663598
\(186\) −2.14001 −0.156913
\(187\) 0 0
\(188\) −24.0626 −1.75495
\(189\) −9.97936 −0.725892
\(190\) −1.22988 −0.0892249
\(191\) −22.9972 −1.66402 −0.832011 0.554759i \(-0.812810\pi\)
−0.832011 + 0.554759i \(0.812810\pi\)
\(192\) 14.7084 1.06149
\(193\) 6.43492 0.463196 0.231598 0.972812i \(-0.425605\pi\)
0.231598 + 0.972812i \(0.425605\pi\)
\(194\) −1.47802 −0.106116
\(195\) −2.80023 −0.200529
\(196\) 1.88370 0.134550
\(197\) −2.27791 −0.162294 −0.0811472 0.996702i \(-0.525858\pi\)
−0.0811472 + 0.996702i \(0.525858\pi\)
\(198\) 0 0
\(199\) 17.6788 1.25322 0.626610 0.779333i \(-0.284442\pi\)
0.626610 + 0.779333i \(0.284442\pi\)
\(200\) −2.61573 −0.184960
\(201\) 11.3556 0.800963
\(202\) −2.72651 −0.191837
\(203\) −0.318606 −0.0223617
\(204\) 17.4431 1.22126
\(205\) −1.90623 −0.133137
\(206\) −2.70858 −0.188716
\(207\) 2.61648 0.181858
\(208\) 5.73176 0.397426
\(209\) 0 0
\(210\) −0.740264 −0.0510831
\(211\) 2.50617 0.172532 0.0862659 0.996272i \(-0.472507\pi\)
0.0862659 + 0.996272i \(0.472507\pi\)
\(212\) 8.40977 0.577586
\(213\) 27.6061 1.89154
\(214\) −0.230612 −0.0157643
\(215\) 5.11884 0.349102
\(216\) 2.58405 0.175822
\(217\) 16.5043 1.12039
\(218\) 1.19596 0.0810006
\(219\) 13.0665 0.882950
\(220\) 0 0
\(221\) 6.61487 0.444964
\(222\) 3.04742 0.204530
\(223\) 18.8877 1.26481 0.632407 0.774637i \(-0.282067\pi\)
0.632407 + 0.774637i \(0.282067\pi\)
\(224\) 4.64629 0.310443
\(225\) −3.94673 −0.263115
\(226\) 0.994995 0.0661861
\(227\) −13.9957 −0.928924 −0.464462 0.885593i \(-0.653752\pi\)
−0.464462 + 0.885593i \(0.653752\pi\)
\(228\) 31.9445 2.11558
\(229\) 8.23448 0.544149 0.272075 0.962276i \(-0.412290\pi\)
0.272075 + 0.962276i \(0.412290\pi\)
\(230\) −0.412017 −0.0271676
\(231\) 0 0
\(232\) 0.0824996 0.00541636
\(233\) 2.69478 0.176541 0.0882704 0.996097i \(-0.471866\pi\)
0.0882704 + 0.996097i \(0.471866\pi\)
\(234\) −0.229320 −0.0149911
\(235\) 11.5088 0.750749
\(236\) 2.33662 0.152101
\(237\) 3.36433 0.218537
\(238\) 1.74869 0.113351
\(239\) 5.82241 0.376620 0.188310 0.982110i \(-0.439699\pi\)
0.188310 + 0.982110i \(0.439699\pi\)
\(240\) −7.22897 −0.466628
\(241\) 26.8223 1.72778 0.863890 0.503681i \(-0.168021\pi\)
0.863890 + 0.503681i \(0.168021\pi\)
\(242\) 0 0
\(243\) 9.63454 0.618056
\(244\) 1.97434 0.126394
\(245\) −0.900944 −0.0575592
\(246\) −0.643601 −0.0410345
\(247\) 12.1142 0.770808
\(248\) −4.27362 −0.271375
\(249\) 1.12777 0.0714693
\(250\) 1.37787 0.0871444
\(251\) 16.7295 1.05596 0.527979 0.849258i \(-0.322950\pi\)
0.527979 + 0.849258i \(0.322950\pi\)
\(252\) 4.66365 0.293782
\(253\) 0 0
\(254\) −0.623909 −0.0391475
\(255\) −8.34275 −0.522443
\(256\) 13.9861 0.874134
\(257\) −19.7602 −1.23261 −0.616305 0.787508i \(-0.711371\pi\)
−0.616305 + 0.787508i \(0.711371\pi\)
\(258\) 1.72828 0.107598
\(259\) −23.5025 −1.46038
\(260\) −2.77799 −0.172284
\(261\) 0.124479 0.00770507
\(262\) −0.804335 −0.0496920
\(263\) −14.9063 −0.919162 −0.459581 0.888136i \(-0.652000\pi\)
−0.459581 + 0.888136i \(0.652000\pi\)
\(264\) 0 0
\(265\) −4.02226 −0.247086
\(266\) 3.20248 0.196357
\(267\) 4.00558 0.245137
\(268\) 11.2654 0.688145
\(269\) 25.0288 1.52603 0.763015 0.646380i \(-0.223718\pi\)
0.763015 + 0.646380i \(0.223718\pi\)
\(270\) −0.613965 −0.0373647
\(271\) 22.1508 1.34557 0.672783 0.739840i \(-0.265099\pi\)
0.672783 + 0.739840i \(0.265099\pi\)
\(272\) 17.0767 1.03543
\(273\) 7.29152 0.441303
\(274\) −2.71037 −0.163739
\(275\) 0 0
\(276\) 10.7016 0.644162
\(277\) −28.9218 −1.73774 −0.868871 0.495038i \(-0.835154\pi\)
−0.868871 + 0.495038i \(0.835154\pi\)
\(278\) 3.65752 0.219364
\(279\) −6.44823 −0.386046
\(280\) −1.47831 −0.0883462
\(281\) −18.0958 −1.07950 −0.539752 0.841824i \(-0.681482\pi\)
−0.539752 + 0.841824i \(0.681482\pi\)
\(282\) 3.88572 0.231391
\(283\) −6.65551 −0.395629 −0.197815 0.980239i \(-0.563384\pi\)
−0.197815 + 0.980239i \(0.563384\pi\)
\(284\) 27.3869 1.62511
\(285\) −15.2786 −0.905024
\(286\) 0 0
\(287\) 4.96362 0.292993
\(288\) −1.81530 −0.106968
\(289\) 2.70772 0.159278
\(290\) −0.0196017 −0.00115105
\(291\) −18.3612 −1.07635
\(292\) 12.9627 0.758583
\(293\) −24.0011 −1.40216 −0.701080 0.713083i \(-0.747298\pi\)
−0.701080 + 0.713083i \(0.747298\pi\)
\(294\) −0.304186 −0.0177405
\(295\) −1.11757 −0.0650673
\(296\) 6.08574 0.353726
\(297\) 0 0
\(298\) −1.42153 −0.0823472
\(299\) 4.05833 0.234699
\(300\) −16.1424 −0.931983
\(301\) −13.3289 −0.768267
\(302\) −0.884018 −0.0508695
\(303\) −33.8709 −1.94583
\(304\) 31.2735 1.79366
\(305\) −0.944293 −0.0540701
\(306\) −0.683214 −0.0390568
\(307\) −12.4957 −0.713169 −0.356584 0.934263i \(-0.616059\pi\)
−0.356584 + 0.934263i \(0.616059\pi\)
\(308\) 0 0
\(309\) −33.6482 −1.91418
\(310\) 1.01540 0.0576710
\(311\) 3.13143 0.177567 0.0887836 0.996051i \(-0.471702\pi\)
0.0887836 + 0.996051i \(0.471702\pi\)
\(312\) −1.88806 −0.106891
\(313\) 21.0389 1.18919 0.594593 0.804027i \(-0.297313\pi\)
0.594593 + 0.804027i \(0.297313\pi\)
\(314\) 2.26626 0.127893
\(315\) −2.23055 −0.125677
\(316\) 3.33761 0.187755
\(317\) 16.9026 0.949343 0.474672 0.880163i \(-0.342567\pi\)
0.474672 + 0.880163i \(0.342567\pi\)
\(318\) −1.35804 −0.0761551
\(319\) 0 0
\(320\) −6.97892 −0.390133
\(321\) −2.86484 −0.159900
\(322\) 1.07285 0.0597877
\(323\) 36.0919 2.00821
\(324\) 21.6370 1.20205
\(325\) −6.12162 −0.339566
\(326\) −1.58143 −0.0875873
\(327\) 14.8572 0.821604
\(328\) −1.28528 −0.0709676
\(329\) −29.9677 −1.65217
\(330\) 0 0
\(331\) −9.05971 −0.497967 −0.248983 0.968508i \(-0.580096\pi\)
−0.248983 + 0.968508i \(0.580096\pi\)
\(332\) 1.11881 0.0614027
\(333\) 9.18244 0.503194
\(334\) −3.68971 −0.201892
\(335\) −5.38807 −0.294382
\(336\) 18.8235 1.02691
\(337\) −7.83185 −0.426628 −0.213314 0.976984i \(-0.568426\pi\)
−0.213314 + 0.976984i \(0.568426\pi\)
\(338\) 1.72692 0.0939321
\(339\) 12.3606 0.671337
\(340\) −8.27649 −0.448856
\(341\) 0 0
\(342\) −1.25121 −0.0676577
\(343\) 19.5579 1.05603
\(344\) 3.45139 0.186086
\(345\) −5.11841 −0.275566
\(346\) 2.77222 0.149035
\(347\) −29.8251 −1.60110 −0.800548 0.599268i \(-0.795458\pi\)
−0.800548 + 0.599268i \(0.795458\pi\)
\(348\) 0.509129 0.0272922
\(349\) 25.0554 1.34118 0.670592 0.741826i \(-0.266040\pi\)
0.670592 + 0.741826i \(0.266040\pi\)
\(350\) −1.61830 −0.0865017
\(351\) 6.04749 0.322791
\(352\) 0 0
\(353\) −11.1541 −0.593671 −0.296835 0.954929i \(-0.595931\pi\)
−0.296835 + 0.954929i \(0.595931\pi\)
\(354\) −0.377325 −0.0200546
\(355\) −13.0987 −0.695207
\(356\) 3.97376 0.210609
\(357\) 21.7237 1.14974
\(358\) 0.0279144 0.00147532
\(359\) −5.42920 −0.286542 −0.143271 0.989683i \(-0.545762\pi\)
−0.143271 + 0.989683i \(0.545762\pi\)
\(360\) 0.577577 0.0304410
\(361\) 47.0972 2.47880
\(362\) 1.83294 0.0963372
\(363\) 0 0
\(364\) 7.23361 0.379144
\(365\) −6.19984 −0.324515
\(366\) −0.318822 −0.0166651
\(367\) 4.29312 0.224099 0.112050 0.993703i \(-0.464258\pi\)
0.112050 + 0.993703i \(0.464258\pi\)
\(368\) 10.4768 0.546142
\(369\) −1.93929 −0.100955
\(370\) −1.44596 −0.0751717
\(371\) 10.4736 0.543760
\(372\) −26.3738 −1.36742
\(373\) −10.9013 −0.564450 −0.282225 0.959348i \(-0.591072\pi\)
−0.282225 + 0.959348i \(0.591072\pi\)
\(374\) 0 0
\(375\) 17.1171 0.883921
\(376\) 7.75981 0.400182
\(377\) 0.193075 0.00994386
\(378\) 1.59870 0.0822283
\(379\) 17.1139 0.879084 0.439542 0.898222i \(-0.355141\pi\)
0.439542 + 0.898222i \(0.355141\pi\)
\(380\) −15.1572 −0.777548
\(381\) −7.75070 −0.397080
\(382\) 3.68418 0.188499
\(383\) 30.5201 1.55950 0.779751 0.626089i \(-0.215345\pi\)
0.779751 + 0.626089i \(0.215345\pi\)
\(384\) −9.87754 −0.504061
\(385\) 0 0
\(386\) −1.03088 −0.0524704
\(387\) 5.20761 0.264718
\(388\) −18.2154 −0.924744
\(389\) 2.52152 0.127846 0.0639231 0.997955i \(-0.479639\pi\)
0.0639231 + 0.997955i \(0.479639\pi\)
\(390\) 0.448600 0.0227157
\(391\) 12.0910 0.611468
\(392\) −0.607463 −0.0306815
\(393\) −9.99210 −0.504035
\(394\) 0.364923 0.0183845
\(395\) −1.59632 −0.0803197
\(396\) 0 0
\(397\) 23.7002 1.18948 0.594739 0.803919i \(-0.297255\pi\)
0.594739 + 0.803919i \(0.297255\pi\)
\(398\) −2.83216 −0.141964
\(399\) 39.7838 1.99168
\(400\) −15.8033 −0.790166
\(401\) 29.0075 1.44857 0.724283 0.689503i \(-0.242171\pi\)
0.724283 + 0.689503i \(0.242171\pi\)
\(402\) −1.81918 −0.0907324
\(403\) −10.0016 −0.498216
\(404\) −33.6019 −1.67176
\(405\) −10.3486 −0.514227
\(406\) 0.0510409 0.00253312
\(407\) 0 0
\(408\) −5.62512 −0.278485
\(409\) −33.0563 −1.63453 −0.817265 0.576262i \(-0.804511\pi\)
−0.817265 + 0.576262i \(0.804511\pi\)
\(410\) 0.305379 0.0150816
\(411\) −33.6704 −1.66084
\(412\) −33.3809 −1.64456
\(413\) 2.91003 0.143193
\(414\) −0.419163 −0.0206007
\(415\) −0.535109 −0.0262675
\(416\) −2.81565 −0.138048
\(417\) 45.4367 2.22504
\(418\) 0 0
\(419\) 20.3884 0.996041 0.498020 0.867165i \(-0.334061\pi\)
0.498020 + 0.867165i \(0.334061\pi\)
\(420\) −9.12311 −0.445162
\(421\) 4.42114 0.215473 0.107737 0.994179i \(-0.465640\pi\)
0.107737 + 0.994179i \(0.465640\pi\)
\(422\) −0.401490 −0.0195442
\(423\) 11.7084 0.569280
\(424\) −2.71202 −0.131707
\(425\) −18.2382 −0.884681
\(426\) −4.42253 −0.214272
\(427\) 2.45884 0.118992
\(428\) −2.84209 −0.137378
\(429\) 0 0
\(430\) −0.820042 −0.0395460
\(431\) −14.6916 −0.707671 −0.353835 0.935308i \(-0.615123\pi\)
−0.353835 + 0.935308i \(0.615123\pi\)
\(432\) 15.6120 0.751130
\(433\) −3.42961 −0.164816 −0.0824082 0.996599i \(-0.526261\pi\)
−0.0824082 + 0.996599i \(0.526261\pi\)
\(434\) −2.64400 −0.126916
\(435\) −0.243508 −0.0116753
\(436\) 14.7392 0.705878
\(437\) 22.1429 1.05924
\(438\) −2.09326 −0.100020
\(439\) 2.87188 0.137067 0.0685337 0.997649i \(-0.478168\pi\)
0.0685337 + 0.997649i \(0.478168\pi\)
\(440\) 0 0
\(441\) −0.916568 −0.0436461
\(442\) −1.05971 −0.0504051
\(443\) −10.9468 −0.520096 −0.260048 0.965596i \(-0.583738\pi\)
−0.260048 + 0.965596i \(0.583738\pi\)
\(444\) 37.5569 1.78237
\(445\) −1.90059 −0.0900965
\(446\) −3.02582 −0.143277
\(447\) −17.6594 −0.835262
\(448\) 18.1724 0.858565
\(449\) 8.44948 0.398756 0.199378 0.979923i \(-0.436108\pi\)
0.199378 + 0.979923i \(0.436108\pi\)
\(450\) 0.632269 0.0298054
\(451\) 0 0
\(452\) 12.2624 0.576777
\(453\) −10.9820 −0.515978
\(454\) 2.24211 0.105228
\(455\) −3.45972 −0.162194
\(456\) −10.3016 −0.482417
\(457\) −34.9160 −1.63330 −0.816650 0.577134i \(-0.804171\pi\)
−0.816650 + 0.577134i \(0.804171\pi\)
\(458\) −1.31917 −0.0616407
\(459\) 18.0173 0.840976
\(460\) −5.07776 −0.236752
\(461\) 13.1355 0.611783 0.305892 0.952066i \(-0.401045\pi\)
0.305892 + 0.952066i \(0.401045\pi\)
\(462\) 0 0
\(463\) 4.51104 0.209646 0.104823 0.994491i \(-0.466572\pi\)
0.104823 + 0.994491i \(0.466572\pi\)
\(464\) 0.498434 0.0231392
\(465\) 12.6141 0.584967
\(466\) −0.431706 −0.0199984
\(467\) −11.7603 −0.544202 −0.272101 0.962269i \(-0.587718\pi\)
−0.272101 + 0.962269i \(0.587718\pi\)
\(468\) −2.82617 −0.130640
\(469\) 14.0300 0.647844
\(470\) −1.84371 −0.0850442
\(471\) 28.1533 1.29724
\(472\) −0.753522 −0.0346837
\(473\) 0 0
\(474\) −0.538968 −0.0247556
\(475\) −33.4006 −1.53253
\(476\) 21.5511 0.987794
\(477\) −4.09202 −0.187361
\(478\) −0.932755 −0.0426632
\(479\) 30.8171 1.40807 0.704033 0.710167i \(-0.251380\pi\)
0.704033 + 0.710167i \(0.251380\pi\)
\(480\) 3.55113 0.162086
\(481\) 14.2425 0.649403
\(482\) −4.29696 −0.195721
\(483\) 13.3278 0.606437
\(484\) 0 0
\(485\) 8.71211 0.395597
\(486\) −1.54346 −0.0700128
\(487\) 9.25458 0.419365 0.209682 0.977770i \(-0.432757\pi\)
0.209682 + 0.977770i \(0.432757\pi\)
\(488\) −0.636692 −0.0288217
\(489\) −19.6458 −0.888414
\(490\) 0.144332 0.00652025
\(491\) −31.1017 −1.40360 −0.701801 0.712373i \(-0.747620\pi\)
−0.701801 + 0.712373i \(0.747620\pi\)
\(492\) −7.93182 −0.357594
\(493\) 0.575229 0.0259070
\(494\) −1.94070 −0.0873164
\(495\) 0 0
\(496\) −25.8197 −1.15934
\(497\) 34.1077 1.52994
\(498\) −0.180669 −0.00809598
\(499\) 33.1250 1.48288 0.741439 0.671020i \(-0.234144\pi\)
0.741439 + 0.671020i \(0.234144\pi\)
\(500\) 16.9811 0.759418
\(501\) −45.8366 −2.04783
\(502\) −2.68008 −0.119618
\(503\) 7.11565 0.317271 0.158636 0.987337i \(-0.449290\pi\)
0.158636 + 0.987337i \(0.449290\pi\)
\(504\) −1.50395 −0.0669913
\(505\) 16.0713 0.715161
\(506\) 0 0
\(507\) 21.4532 0.952770
\(508\) −7.68914 −0.341150
\(509\) 0.658501 0.0291875 0.0145938 0.999894i \(-0.495354\pi\)
0.0145938 + 0.999894i \(0.495354\pi\)
\(510\) 1.33652 0.0591819
\(511\) 16.1437 0.714157
\(512\) −12.1671 −0.537713
\(513\) 32.9962 1.45682
\(514\) 3.16560 0.139629
\(515\) 15.9656 0.703527
\(516\) 21.2995 0.937659
\(517\) 0 0
\(518\) 3.76512 0.165430
\(519\) 34.4387 1.51169
\(520\) 0.895858 0.0392860
\(521\) −40.5892 −1.77825 −0.889123 0.457669i \(-0.848684\pi\)
−0.889123 + 0.457669i \(0.848684\pi\)
\(522\) −0.0199417 −0.000872823 0
\(523\) −0.978083 −0.0427686 −0.0213843 0.999771i \(-0.506807\pi\)
−0.0213843 + 0.999771i \(0.506807\pi\)
\(524\) −9.91273 −0.433040
\(525\) −20.1038 −0.877402
\(526\) 2.38800 0.104122
\(527\) −29.7978 −1.29801
\(528\) 0 0
\(529\) −15.5820 −0.677477
\(530\) 0.644369 0.0279896
\(531\) −1.13695 −0.0493394
\(532\) 39.4678 1.71115
\(533\) −3.00795 −0.130289
\(534\) −0.641697 −0.0277689
\(535\) 1.35933 0.0587688
\(536\) −3.63292 −0.156918
\(537\) 0.346775 0.0149644
\(538\) −4.00963 −0.172867
\(539\) 0 0
\(540\) −7.56658 −0.325614
\(541\) 20.3077 0.873098 0.436549 0.899681i \(-0.356201\pi\)
0.436549 + 0.899681i \(0.356201\pi\)
\(542\) −3.54858 −0.152425
\(543\) 22.7703 0.977166
\(544\) −8.38868 −0.359662
\(545\) −7.04951 −0.301968
\(546\) −1.16811 −0.0499904
\(547\) 39.3824 1.68387 0.841936 0.539578i \(-0.181416\pi\)
0.841936 + 0.539578i \(0.181416\pi\)
\(548\) −33.4030 −1.42690
\(549\) −0.960669 −0.0410004
\(550\) 0 0
\(551\) 1.05345 0.0448785
\(552\) −3.45110 −0.146889
\(553\) 4.15666 0.176759
\(554\) 4.63330 0.196850
\(555\) −17.9628 −0.762480
\(556\) 45.0758 1.91164
\(557\) −22.6890 −0.961364 −0.480682 0.876895i \(-0.659611\pi\)
−0.480682 + 0.876895i \(0.659611\pi\)
\(558\) 1.03301 0.0437309
\(559\) 8.07733 0.341635
\(560\) −8.93147 −0.377423
\(561\) 0 0
\(562\) 2.89896 0.122285
\(563\) 43.1631 1.81911 0.909554 0.415586i \(-0.136423\pi\)
0.909554 + 0.415586i \(0.136423\pi\)
\(564\) 47.8881 2.01645
\(565\) −5.86493 −0.246740
\(566\) 1.06622 0.0448165
\(567\) 26.9468 1.13166
\(568\) −8.83183 −0.370575
\(569\) 4.60536 0.193067 0.0965333 0.995330i \(-0.469225\pi\)
0.0965333 + 0.995330i \(0.469225\pi\)
\(570\) 2.44764 0.102520
\(571\) 2.33936 0.0978991 0.0489495 0.998801i \(-0.484413\pi\)
0.0489495 + 0.998801i \(0.484413\pi\)
\(572\) 0 0
\(573\) 45.7678 1.91198
\(574\) −0.795176 −0.0331900
\(575\) −11.1894 −0.466631
\(576\) −7.09995 −0.295831
\(577\) −16.0826 −0.669528 −0.334764 0.942302i \(-0.608657\pi\)
−0.334764 + 0.942302i \(0.608657\pi\)
\(578\) −0.433779 −0.0180428
\(579\) −12.8064 −0.532216
\(580\) −0.241574 −0.0100308
\(581\) 1.39337 0.0578067
\(582\) 2.94148 0.121928
\(583\) 0 0
\(584\) −4.18026 −0.172980
\(585\) 1.35171 0.0558864
\(586\) 3.84500 0.158835
\(587\) −10.1005 −0.416891 −0.208445 0.978034i \(-0.566840\pi\)
−0.208445 + 0.978034i \(0.566840\pi\)
\(588\) −3.74883 −0.154599
\(589\) −54.5705 −2.24854
\(590\) 0.179035 0.00737076
\(591\) 4.53337 0.186478
\(592\) 36.7679 1.51115
\(593\) 36.4212 1.49564 0.747820 0.663902i \(-0.231101\pi\)
0.747820 + 0.663902i \(0.231101\pi\)
\(594\) 0 0
\(595\) −10.3076 −0.422569
\(596\) −17.5192 −0.717613
\(597\) −35.1834 −1.43996
\(598\) −0.650147 −0.0265865
\(599\) 35.0428 1.43181 0.715906 0.698197i \(-0.246014\pi\)
0.715906 + 0.698197i \(0.246014\pi\)
\(600\) 5.20567 0.212521
\(601\) 38.6817 1.57786 0.788929 0.614485i \(-0.210636\pi\)
0.788929 + 0.614485i \(0.210636\pi\)
\(602\) 2.13531 0.0870286
\(603\) −5.48151 −0.223224
\(604\) −10.8948 −0.443301
\(605\) 0 0
\(606\) 5.42615 0.220422
\(607\) 11.6556 0.473086 0.236543 0.971621i \(-0.423986\pi\)
0.236543 + 0.971621i \(0.423986\pi\)
\(608\) −15.3627 −0.623038
\(609\) 0.634071 0.0256938
\(610\) 0.151277 0.00612501
\(611\) 18.1604 0.734691
\(612\) −8.42002 −0.340359
\(613\) −40.0506 −1.61763 −0.808815 0.588063i \(-0.799891\pi\)
−0.808815 + 0.588063i \(0.799891\pi\)
\(614\) 2.00182 0.0807871
\(615\) 3.79366 0.152975
\(616\) 0 0
\(617\) 33.1010 1.33260 0.666299 0.745685i \(-0.267877\pi\)
0.666299 + 0.745685i \(0.267877\pi\)
\(618\) 5.39047 0.216836
\(619\) 33.4246 1.34345 0.671724 0.740801i \(-0.265554\pi\)
0.671724 + 0.740801i \(0.265554\pi\)
\(620\) 12.5140 0.502573
\(621\) 11.0539 0.443578
\(622\) −0.501658 −0.0201146
\(623\) 4.94893 0.198275
\(624\) −11.4070 −0.456647
\(625\) 12.4198 0.496791
\(626\) −3.37044 −0.134710
\(627\) 0 0
\(628\) 27.9297 1.11452
\(629\) 42.4328 1.69191
\(630\) 0.357336 0.0142366
\(631\) 17.9993 0.716539 0.358270 0.933618i \(-0.383367\pi\)
0.358270 + 0.933618i \(0.383367\pi\)
\(632\) −1.07632 −0.0428139
\(633\) −4.98764 −0.198241
\(634\) −2.70781 −0.107541
\(635\) 3.67759 0.145941
\(636\) −16.7367 −0.663651
\(637\) −1.42165 −0.0563280
\(638\) 0 0
\(639\) −13.3259 −0.527163
\(640\) 4.68675 0.185260
\(641\) −23.9835 −0.947292 −0.473646 0.880715i \(-0.657062\pi\)
−0.473646 + 0.880715i \(0.657062\pi\)
\(642\) 0.458950 0.0181133
\(643\) 1.48031 0.0583777 0.0291889 0.999574i \(-0.490708\pi\)
0.0291889 + 0.999574i \(0.490708\pi\)
\(644\) 13.2220 0.521018
\(645\) −10.1872 −0.401122
\(646\) −5.78195 −0.227488
\(647\) −2.87709 −0.113110 −0.0565551 0.998399i \(-0.518012\pi\)
−0.0565551 + 0.998399i \(0.518012\pi\)
\(648\) −6.97758 −0.274105
\(649\) 0 0
\(650\) 0.980688 0.0384658
\(651\) −32.8459 −1.28733
\(652\) −19.4898 −0.763278
\(653\) −30.2463 −1.18363 −0.591815 0.806074i \(-0.701588\pi\)
−0.591815 + 0.806074i \(0.701588\pi\)
\(654\) −2.38013 −0.0930705
\(655\) 4.74110 0.185250
\(656\) −7.76521 −0.303180
\(657\) −6.30736 −0.246074
\(658\) 4.80084 0.187156
\(659\) 6.01148 0.234174 0.117087 0.993122i \(-0.462644\pi\)
0.117087 + 0.993122i \(0.462644\pi\)
\(660\) 0 0
\(661\) 9.53794 0.370983 0.185491 0.982646i \(-0.440612\pi\)
0.185491 + 0.982646i \(0.440612\pi\)
\(662\) 1.45137 0.0564092
\(663\) −13.1645 −0.511268
\(664\) −0.360798 −0.0140017
\(665\) −18.8768 −0.732012
\(666\) −1.47103 −0.0570014
\(667\) 0.352912 0.0136648
\(668\) −45.4725 −1.75938
\(669\) −37.5892 −1.45328
\(670\) 0.863173 0.0333473
\(671\) 0 0
\(672\) −9.24678 −0.356702
\(673\) 10.4894 0.404336 0.202168 0.979351i \(-0.435201\pi\)
0.202168 + 0.979351i \(0.435201\pi\)
\(674\) 1.25467 0.0483280
\(675\) −16.6738 −0.641776
\(676\) 21.2828 0.818569
\(677\) −47.8587 −1.83936 −0.919680 0.392669i \(-0.871552\pi\)
−0.919680 + 0.392669i \(0.871552\pi\)
\(678\) −1.98018 −0.0760484
\(679\) −22.6854 −0.870587
\(680\) 2.66904 0.102353
\(681\) 27.8534 1.06734
\(682\) 0 0
\(683\) −8.00998 −0.306493 −0.153247 0.988188i \(-0.548973\pi\)
−0.153247 + 0.988188i \(0.548973\pi\)
\(684\) −15.4201 −0.589601
\(685\) 15.9761 0.610416
\(686\) −3.13319 −0.119626
\(687\) −16.3878 −0.625233
\(688\) 20.8521 0.794979
\(689\) −6.34697 −0.241800
\(690\) 0.819974 0.0312159
\(691\) −7.68357 −0.292297 −0.146148 0.989263i \(-0.546688\pi\)
−0.146148 + 0.989263i \(0.546688\pi\)
\(692\) 34.1652 1.29877
\(693\) 0 0
\(694\) 4.77801 0.181371
\(695\) −21.5590 −0.817781
\(696\) −0.164186 −0.00622346
\(697\) −8.96161 −0.339445
\(698\) −4.01389 −0.151928
\(699\) −5.36299 −0.202847
\(700\) −19.9441 −0.753817
\(701\) −4.44441 −0.167863 −0.0839315 0.996472i \(-0.526748\pi\)
−0.0839315 + 0.996472i \(0.526748\pi\)
\(702\) −0.968812 −0.0365655
\(703\) 77.7097 2.93088
\(704\) 0 0
\(705\) −22.9041 −0.862618
\(706\) 1.78689 0.0672505
\(707\) −41.8479 −1.57385
\(708\) −4.65020 −0.174765
\(709\) 12.6530 0.475193 0.237596 0.971364i \(-0.423640\pi\)
0.237596 + 0.971364i \(0.423640\pi\)
\(710\) 2.09842 0.0787524
\(711\) −1.62401 −0.0609050
\(712\) −1.28147 −0.0480253
\(713\) −18.2815 −0.684646
\(714\) −3.48015 −0.130241
\(715\) 0 0
\(716\) 0.344020 0.0128566
\(717\) −11.5874 −0.432741
\(718\) 0.869761 0.0324592
\(719\) 32.2707 1.20349 0.601747 0.798687i \(-0.294472\pi\)
0.601747 + 0.798687i \(0.294472\pi\)
\(720\) 3.48952 0.130047
\(721\) −41.5727 −1.54825
\(722\) −7.54500 −0.280796
\(723\) −53.3803 −1.98523
\(724\) 22.5894 0.839529
\(725\) −0.532336 −0.0197705
\(726\) 0 0
\(727\) −2.89002 −0.107185 −0.0535925 0.998563i \(-0.517067\pi\)
−0.0535925 + 0.998563i \(0.517067\pi\)
\(728\) −2.33272 −0.0864564
\(729\) 13.7032 0.507528
\(730\) 0.993220 0.0367607
\(731\) 24.0648 0.890070
\(732\) −3.92921 −0.145228
\(733\) 25.1963 0.930646 0.465323 0.885141i \(-0.345938\pi\)
0.465323 + 0.885141i \(0.345938\pi\)
\(734\) −0.687761 −0.0253857
\(735\) 1.79301 0.0661361
\(736\) −5.14659 −0.189706
\(737\) 0 0
\(738\) 0.310675 0.0114361
\(739\) 12.1849 0.448228 0.224114 0.974563i \(-0.428051\pi\)
0.224114 + 0.974563i \(0.428051\pi\)
\(740\) −17.8202 −0.655082
\(741\) −24.1090 −0.885665
\(742\) −1.67787 −0.0615966
\(743\) 3.55450 0.130402 0.0652010 0.997872i \(-0.479231\pi\)
0.0652010 + 0.997872i \(0.479231\pi\)
\(744\) 8.50511 0.311813
\(745\) 8.37913 0.306988
\(746\) 1.74640 0.0639403
\(747\) −0.544389 −0.0199181
\(748\) 0 0
\(749\) −3.53954 −0.129332
\(750\) −2.74217 −0.100130
\(751\) 14.1488 0.516298 0.258149 0.966105i \(-0.416887\pi\)
0.258149 + 0.966105i \(0.416887\pi\)
\(752\) 46.8821 1.70962
\(753\) −33.2941 −1.21330
\(754\) −0.0309307 −0.00112643
\(755\) 5.21079 0.189640
\(756\) 19.7026 0.716577
\(757\) 24.3922 0.886550 0.443275 0.896386i \(-0.353817\pi\)
0.443275 + 0.896386i \(0.353817\pi\)
\(758\) −2.74167 −0.0995818
\(759\) 0 0
\(760\) 4.88796 0.177305
\(761\) −46.3497 −1.68018 −0.840088 0.542451i \(-0.817497\pi\)
−0.840088 + 0.542451i \(0.817497\pi\)
\(762\) 1.24167 0.0449809
\(763\) 18.3562 0.664539
\(764\) 45.4043 1.64267
\(765\) 4.02716 0.145602
\(766\) −4.88934 −0.176659
\(767\) −1.76348 −0.0636755
\(768\) −27.8344 −1.00439
\(769\) 8.45198 0.304786 0.152393 0.988320i \(-0.451302\pi\)
0.152393 + 0.988320i \(0.451302\pi\)
\(770\) 0 0
\(771\) 39.3257 1.41628
\(772\) −12.7047 −0.457252
\(773\) −5.83136 −0.209739 −0.104870 0.994486i \(-0.533443\pi\)
−0.104870 + 0.994486i \(0.533443\pi\)
\(774\) −0.834264 −0.0299870
\(775\) 27.5759 0.990556
\(776\) 5.87416 0.210870
\(777\) 46.7734 1.67799
\(778\) −0.403950 −0.0144823
\(779\) −16.4119 −0.588018
\(780\) 5.52860 0.197956
\(781\) 0 0
\(782\) −1.93699 −0.0692665
\(783\) 0.525890 0.0187938
\(784\) −3.67009 −0.131074
\(785\) −13.3583 −0.476780
\(786\) 1.60074 0.0570966
\(787\) 15.8221 0.563997 0.281998 0.959415i \(-0.409003\pi\)
0.281998 + 0.959415i \(0.409003\pi\)
\(788\) 4.49736 0.160212
\(789\) 29.6657 1.05613
\(790\) 0.255732 0.00909855
\(791\) 15.2717 0.542999
\(792\) 0 0
\(793\) −1.49006 −0.0529135
\(794\) −3.79679 −0.134743
\(795\) 8.00487 0.283904
\(796\) −34.9040 −1.23714
\(797\) 12.4030 0.439335 0.219668 0.975575i \(-0.429503\pi\)
0.219668 + 0.975575i \(0.429503\pi\)
\(798\) −6.37340 −0.225616
\(799\) 54.1053 1.91411
\(800\) 7.76316 0.274469
\(801\) −1.93355 −0.0683185
\(802\) −4.64703 −0.164092
\(803\) 0 0
\(804\) −22.4198 −0.790685
\(805\) −6.32385 −0.222886
\(806\) 1.60227 0.0564374
\(807\) −49.8108 −1.75342
\(808\) 10.8361 0.381212
\(809\) 46.8544 1.64731 0.823657 0.567088i \(-0.191930\pi\)
0.823657 + 0.567088i \(0.191930\pi\)
\(810\) 1.65786 0.0582512
\(811\) −12.0879 −0.424465 −0.212232 0.977219i \(-0.568073\pi\)
−0.212232 + 0.977219i \(0.568073\pi\)
\(812\) 0.629034 0.0220748
\(813\) −44.0833 −1.54607
\(814\) 0 0
\(815\) 9.32164 0.326523
\(816\) −33.9850 −1.18971
\(817\) 44.0713 1.54186
\(818\) 5.29565 0.185158
\(819\) −3.51972 −0.122989
\(820\) 3.76353 0.131428
\(821\) −31.5046 −1.09952 −0.549759 0.835324i \(-0.685280\pi\)
−0.549759 + 0.835324i \(0.685280\pi\)
\(822\) 5.39403 0.188138
\(823\) 7.27344 0.253536 0.126768 0.991932i \(-0.459540\pi\)
0.126768 + 0.991932i \(0.459540\pi\)
\(824\) 10.7648 0.375010
\(825\) 0 0
\(826\) −0.466189 −0.0162208
\(827\) −24.0404 −0.835965 −0.417982 0.908455i \(-0.637263\pi\)
−0.417982 + 0.908455i \(0.637263\pi\)
\(828\) −5.16582 −0.179525
\(829\) −22.8708 −0.794336 −0.397168 0.917746i \(-0.630007\pi\)
−0.397168 + 0.917746i \(0.630007\pi\)
\(830\) 0.0857249 0.00297555
\(831\) 57.5585 1.99668
\(832\) −11.0125 −0.381788
\(833\) −4.23554 −0.146753
\(834\) −7.27899 −0.252051
\(835\) 21.7488 0.752647
\(836\) 0 0
\(837\) −27.2420 −0.941620
\(838\) −3.26624 −0.112831
\(839\) 35.0431 1.20982 0.604912 0.796292i \(-0.293208\pi\)
0.604912 + 0.796292i \(0.293208\pi\)
\(840\) 2.94206 0.101511
\(841\) −28.9832 −0.999421
\(842\) −0.708270 −0.0244086
\(843\) 36.0132 1.24036
\(844\) −4.94802 −0.170318
\(845\) −10.1792 −0.350176
\(846\) −1.87569 −0.0644875
\(847\) 0 0
\(848\) −16.3851 −0.562666
\(849\) 13.2454 0.454582
\(850\) 2.92177 0.100216
\(851\) 26.0332 0.892407
\(852\) −54.5038 −1.86727
\(853\) 10.6854 0.365862 0.182931 0.983126i \(-0.441442\pi\)
0.182931 + 0.983126i \(0.441442\pi\)
\(854\) −0.393909 −0.0134793
\(855\) 7.37517 0.252226
\(856\) 0.916528 0.0313263
\(857\) −25.4187 −0.868286 −0.434143 0.900844i \(-0.642949\pi\)
−0.434143 + 0.900844i \(0.642949\pi\)
\(858\) 0 0
\(859\) −10.1605 −0.346673 −0.173337 0.984863i \(-0.555455\pi\)
−0.173337 + 0.984863i \(0.555455\pi\)
\(860\) −10.1063 −0.344622
\(861\) −9.87831 −0.336652
\(862\) 2.35361 0.0801643
\(863\) 39.5319 1.34568 0.672841 0.739787i \(-0.265074\pi\)
0.672841 + 0.739787i \(0.265074\pi\)
\(864\) −7.66915 −0.260910
\(865\) −16.3407 −0.555599
\(866\) 0.549426 0.0186702
\(867\) −5.38875 −0.183011
\(868\) −32.5851 −1.10601
\(869\) 0 0
\(870\) 0.0390102 0.00132257
\(871\) −8.50216 −0.288085
\(872\) −4.75315 −0.160962
\(873\) 8.86320 0.299974
\(874\) −3.54732 −0.119990
\(875\) 21.1483 0.714943
\(876\) −25.7976 −0.871619
\(877\) −16.9987 −0.574005 −0.287002 0.957930i \(-0.592659\pi\)
−0.287002 + 0.957930i \(0.592659\pi\)
\(878\) −0.460078 −0.0155269
\(879\) 47.7656 1.61110
\(880\) 0 0
\(881\) 15.5041 0.522347 0.261174 0.965292i \(-0.415890\pi\)
0.261174 + 0.965292i \(0.415890\pi\)
\(882\) 0.146835 0.00494419
\(883\) −1.52136 −0.0511980 −0.0255990 0.999672i \(-0.508149\pi\)
−0.0255990 + 0.999672i \(0.508149\pi\)
\(884\) −13.0600 −0.439254
\(885\) 2.22412 0.0747629
\(886\) 1.75368 0.0589160
\(887\) −34.5166 −1.15895 −0.579477 0.814988i \(-0.696743\pi\)
−0.579477 + 0.814988i \(0.696743\pi\)
\(888\) −12.1115 −0.406435
\(889\) −9.57607 −0.321171
\(890\) 0.304476 0.0102060
\(891\) 0 0
\(892\) −37.2906 −1.24858
\(893\) 99.0863 3.31580
\(894\) 2.82905 0.0946177
\(895\) −0.164540 −0.00549995
\(896\) −12.2038 −0.407700
\(897\) −8.07665 −0.269672
\(898\) −1.35361 −0.0451707
\(899\) −0.869740 −0.0290074
\(900\) 7.79217 0.259739
\(901\) −18.9096 −0.629969
\(902\) 0 0
\(903\) 26.5265 0.882746
\(904\) −3.95444 −0.131523
\(905\) −10.8042 −0.359142
\(906\) 1.75932 0.0584495
\(907\) −8.20949 −0.272591 −0.136296 0.990668i \(-0.543520\pi\)
−0.136296 + 0.990668i \(0.543520\pi\)
\(908\) 27.6321 0.917004
\(909\) 16.3500 0.542294
\(910\) 0.554250 0.0183732
\(911\) 30.4629 1.00928 0.504641 0.863329i \(-0.331625\pi\)
0.504641 + 0.863329i \(0.331625\pi\)
\(912\) −62.2388 −2.06093
\(913\) 0 0
\(914\) 5.59356 0.185019
\(915\) 1.87928 0.0621270
\(916\) −16.2576 −0.537167
\(917\) −12.3453 −0.407679
\(918\) −2.88639 −0.0952650
\(919\) −38.8785 −1.28248 −0.641241 0.767339i \(-0.721580\pi\)
−0.641241 + 0.767339i \(0.721580\pi\)
\(920\) 1.63750 0.0539866
\(921\) 24.8683 0.819438
\(922\) −2.10432 −0.0693022
\(923\) −20.6692 −0.680336
\(924\) 0 0
\(925\) −39.2688 −1.29115
\(926\) −0.722671 −0.0237485
\(927\) 16.2424 0.533472
\(928\) −0.244849 −0.00803756
\(929\) −3.78496 −0.124181 −0.0620903 0.998071i \(-0.519777\pi\)
−0.0620903 + 0.998071i \(0.519777\pi\)
\(930\) −2.02080 −0.0662645
\(931\) −7.75679 −0.254219
\(932\) −5.32040 −0.174275
\(933\) −6.23199 −0.204026
\(934\) 1.88401 0.0616467
\(935\) 0 0
\(936\) 0.911394 0.0297899
\(937\) −16.6575 −0.544176 −0.272088 0.962272i \(-0.587714\pi\)
−0.272088 + 0.962272i \(0.587714\pi\)
\(938\) −2.24761 −0.0733872
\(939\) −41.8703 −1.36639
\(940\) −22.7222 −0.741116
\(941\) 22.8025 0.743341 0.371671 0.928365i \(-0.378785\pi\)
0.371671 + 0.928365i \(0.378785\pi\)
\(942\) −4.51019 −0.146950
\(943\) −5.49809 −0.179042
\(944\) −4.55252 −0.148172
\(945\) −9.42344 −0.306545
\(946\) 0 0
\(947\) 27.5003 0.893639 0.446819 0.894624i \(-0.352557\pi\)
0.446819 + 0.894624i \(0.352557\pi\)
\(948\) −6.64231 −0.215732
\(949\) −9.78311 −0.317573
\(950\) 5.35081 0.173603
\(951\) −33.6385 −1.09080
\(952\) −6.94989 −0.225247
\(953\) 22.0617 0.714648 0.357324 0.933980i \(-0.383689\pi\)
0.357324 + 0.933980i \(0.383689\pi\)
\(954\) 0.655544 0.0212240
\(955\) −21.7161 −0.702718
\(956\) −11.4954 −0.371788
\(957\) 0 0
\(958\) −4.93692 −0.159505
\(959\) −41.6001 −1.34334
\(960\) 13.8890 0.448267
\(961\) 14.0540 0.453355
\(962\) −2.28166 −0.0735638
\(963\) 1.38290 0.0445633
\(964\) −52.9563 −1.70561
\(965\) 6.07645 0.195608
\(966\) −2.13513 −0.0686966
\(967\) −60.9568 −1.96024 −0.980119 0.198413i \(-0.936421\pi\)
−0.980119 + 0.198413i \(0.936421\pi\)
\(968\) 0 0
\(969\) −71.8280 −2.30745
\(970\) −1.39569 −0.0448128
\(971\) 13.5744 0.435624 0.217812 0.975991i \(-0.430108\pi\)
0.217812 + 0.975991i \(0.430108\pi\)
\(972\) −19.0218 −0.610125
\(973\) 56.1375 1.79969
\(974\) −1.48259 −0.0475053
\(975\) 12.1829 0.390165
\(976\) −3.84667 −0.123129
\(977\) −13.2043 −0.422443 −0.211222 0.977438i \(-0.567744\pi\)
−0.211222 + 0.977438i \(0.567744\pi\)
\(978\) 3.14727 0.100639
\(979\) 0 0
\(980\) 1.77877 0.0568206
\(981\) −7.17176 −0.228977
\(982\) 4.98252 0.158999
\(983\) 55.4465 1.76847 0.884234 0.467044i \(-0.154681\pi\)
0.884234 + 0.467044i \(0.154681\pi\)
\(984\) 2.55789 0.0815424
\(985\) −2.15101 −0.0685370
\(986\) −0.0921522 −0.00293472
\(987\) 59.6399 1.89836
\(988\) −23.9175 −0.760916
\(989\) 14.7642 0.469473
\(990\) 0 0
\(991\) 16.9964 0.539910 0.269955 0.962873i \(-0.412991\pi\)
0.269955 + 0.962873i \(0.412991\pi\)
\(992\) 12.6836 0.402704
\(993\) 18.0301 0.572168
\(994\) −5.46408 −0.173310
\(995\) 16.6940 0.529236
\(996\) −2.22659 −0.0705522
\(997\) 48.7801 1.54488 0.772440 0.635088i \(-0.219036\pi\)
0.772440 + 0.635088i \(0.219036\pi\)
\(998\) −5.30665 −0.167979
\(999\) 38.7932 1.22736
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7381.2.a.u.1.31 64
11.7 odd 10 671.2.j.c.489.18 yes 128
11.8 odd 10 671.2.j.c.306.18 128
11.10 odd 2 7381.2.a.v.1.34 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
671.2.j.c.306.18 128 11.8 odd 10
671.2.j.c.489.18 yes 128 11.7 odd 10
7381.2.a.u.1.31 64 1.1 even 1 trivial
7381.2.a.v.1.34 64 11.10 odd 2