Properties

Label 64.12.b
Level $64$
Weight $12$
Character orbit 64.b
Rep. character $\chi_{64}(33,\cdot)$
Character field $\Q$
Dimension $22$
Newform subspaces $3$
Sturm bound $96$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 64.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(96\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(64, [\chi])\).

Total New Old
Modular forms 94 22 72
Cusp forms 82 22 60
Eisenstein series 12 0 12

Trace form

\( 22 q - 1299078 q^{9} + O(q^{10}) \) \( 22 q - 1299078 q^{9} - 15838404 q^{17} - 317390338 q^{25} + 330519048 q^{33} + 3929447772 q^{41} + 6186934022 q^{49} + 180282216 q^{57} + 12377477376 q^{65} - 52331693044 q^{73} + 257590771950 q^{81} + 336607369260 q^{89} - 74539237796 q^{97} + O(q^{100}) \)

Decomposition of \(S_{12}^{\mathrm{new}}(64, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
64.12.b.a 64.b 8.b $2$ $49.174$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-2}) \) 64.12.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+197iq^{3}+21911q^{9}+70953iq^{11}+\cdots\)
64.12.b.b 64.b 8.b $4$ $49.174$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 64.12.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-15^{2}\beta _{1}q^{3}+\beta _{3}q^{5}+\beta _{2}q^{7}-25353q^{9}+\cdots\)
64.12.b.c 64.b 8.b $16$ $49.174$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 64.12.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{8}q^{3}+\beta _{1}q^{5}+\beta _{10}q^{7}+(-77593+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(64, [\chi])\) into lower level spaces

\( S_{12}^{\mathrm{old}}(64, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 2}\)