Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [510,2,Mod(53,510)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(510, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([4, 6, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("510.53");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 510.z (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.07237050309\) |
Analytic rank: | \(0\) |
Dimension: | \(68\) |
Relative dimension: | \(17\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 | − | 1.00000i | −1.69677 | + | 0.347822i | −1.00000 | −2.23448 | − | 0.0843538i | 0.347822 | + | 1.69677i | 0.829784 | + | 2.00328i | 1.00000i | 2.75804 | − | 1.18035i | −0.0843538 | + | 2.23448i | |||||
53.2 | − | 1.00000i | −1.55361 | − | 0.765694i | −1.00000 | 2.18223 | − | 0.487720i | −0.765694 | + | 1.55361i | −1.00160 | − | 2.41808i | 1.00000i | 1.82742 | + | 2.37919i | −0.487720 | − | 2.18223i | |||||
53.3 | − | 1.00000i | −1.51007 | + | 0.848350i | −1.00000 | 1.47611 | + | 1.67961i | 0.848350 | + | 1.51007i | −0.200520 | − | 0.484099i | 1.00000i | 1.56060 | − | 2.56213i | 1.67961 | − | 1.47611i | |||||
53.4 | − | 1.00000i | −1.46300 | − | 0.927160i | −1.00000 | 1.45144 | − | 1.70098i | −0.927160 | + | 1.46300i | 1.80715 | + | 4.36284i | 1.00000i | 1.28075 | + | 2.71287i | −1.70098 | − | 1.45144i | |||||
53.5 | − | 1.00000i | −1.07349 | − | 1.35928i | −1.00000 | 0.218231 | + | 2.22539i | −1.35928 | + | 1.07349i | 0.593305 | + | 1.43237i | 1.00000i | −0.695259 | + | 2.91832i | 2.22539 | − | 0.218231i | |||||
53.6 | − | 1.00000i | −1.05432 | + | 1.37419i | −1.00000 | 1.51363 | − | 1.64589i | 1.37419 | + | 1.05432i | 0.0649895 | + | 0.156899i | 1.00000i | −0.776818 | − | 2.89768i | −1.64589 | − | 1.51363i | |||||
53.7 | − | 1.00000i | −0.811950 | − | 1.52995i | −1.00000 | −1.21731 | − | 1.87567i | −1.52995 | + | 0.811950i | −1.50864 | − | 3.64218i | 1.00000i | −1.68147 | + | 2.48448i | −1.87567 | + | 1.21731i | |||||
53.8 | − | 1.00000i | −0.633463 | + | 1.61206i | −1.00000 | −1.30152 | + | 1.81826i | 1.61206 | + | 0.633463i | −1.23846 | − | 2.98990i | 1.00000i | −2.19745 | − | 2.04235i | 1.81826 | + | 1.30152i | |||||
53.9 | − | 1.00000i | −0.266295 | + | 1.71146i | −1.00000 | −1.40096 | − | 1.74279i | 1.71146 | + | 0.266295i | 1.52584 | + | 3.68370i | 1.00000i | −2.85817 | − | 0.911505i | −1.74279 | + | 1.40096i | |||||
53.10 | − | 1.00000i | 0.0346928 | − | 1.73170i | −1.00000 | −0.656081 | + | 2.13765i | −1.73170 | − | 0.0346928i | 0.470731 | + | 1.13645i | 1.00000i | −2.99759 | − | 0.120155i | 2.13765 | + | 0.656081i | |||||
53.11 | − | 1.00000i | 0.566798 | + | 1.63669i | −1.00000 | 1.83136 | + | 1.28301i | 1.63669 | − | 0.566798i | 0.0711949 | + | 0.171880i | 1.00000i | −2.35748 | + | 1.85534i | 1.28301 | − | 1.83136i | |||||
53.12 | − | 1.00000i | 0.885498 | − | 1.48859i | −1.00000 | −2.23369 | + | 0.103039i | −1.48859 | − | 0.885498i | −0.382491 | − | 0.923415i | 1.00000i | −1.43179 | − | 2.63628i | 0.103039 | + | 2.23369i | |||||
53.13 | − | 1.00000i | 0.923930 | + | 1.46504i | −1.00000 | −2.13138 | − | 0.676190i | 1.46504 | − | 0.923930i | −1.08402 | − | 2.61706i | 1.00000i | −1.29271 | + | 2.70720i | −0.676190 | + | 2.13138i | |||||
53.14 | − | 1.00000i | 1.13649 | − | 1.30706i | −1.00000 | 1.55549 | − | 1.60638i | −1.30706 | − | 1.13649i | −0.701219 | − | 1.69289i | 1.00000i | −0.416795 | − | 2.97091i | −1.60638 | − | 1.55549i | |||||
53.15 | − | 1.00000i | 1.52172 | + | 0.827260i | −1.00000 | 0.266360 | − | 2.22015i | 0.827260 | − | 1.52172i | 0.113597 | + | 0.274249i | 1.00000i | 1.63128 | + | 2.51772i | −2.22015 | − | 0.266360i | |||||
53.16 | − | 1.00000i | 1.57925 | − | 0.711306i | −1.00000 | 0.396495 | + | 2.20063i | −0.711306 | − | 1.57925i | −1.80461 | − | 4.35672i | 1.00000i | 1.98809 | − | 2.24667i | 2.20063 | − | 0.396495i | |||||
53.17 | − | 1.00000i | 1.70747 | + | 0.290754i | −1.00000 | 1.81961 | + | 1.29962i | 0.290754 | − | 1.70747i | 0.737866 | + | 1.78137i | 1.00000i | 2.83092 | + | 0.992907i | 1.29962 | − | 1.81961i | |||||
77.1 | 1.00000i | −1.69677 | − | 0.347822i | −1.00000 | −2.23448 | + | 0.0843538i | 0.347822 | − | 1.69677i | 0.829784 | − | 2.00328i | − | 1.00000i | 2.75804 | + | 1.18035i | −0.0843538 | − | 2.23448i | |||||
77.2 | 1.00000i | −1.55361 | + | 0.765694i | −1.00000 | 2.18223 | + | 0.487720i | −0.765694 | − | 1.55361i | −1.00160 | + | 2.41808i | − | 1.00000i | 1.82742 | − | 2.37919i | −0.487720 | + | 2.18223i | |||||
77.3 | 1.00000i | −1.51007 | − | 0.848350i | −1.00000 | 1.47611 | − | 1.67961i | 0.848350 | − | 1.51007i | −0.200520 | + | 0.484099i | − | 1.00000i | 1.56060 | + | 2.56213i | 1.67961 | + | 1.47611i | |||||
See all 68 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
255.v | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 510.2.z.c | yes | 68 |
3.b | odd | 2 | 1 | 510.2.z.d | yes | 68 | |
5.c | odd | 4 | 1 | 510.2.w.d | yes | 68 | |
15.e | even | 4 | 1 | 510.2.w.c | ✓ | 68 | |
17.d | even | 8 | 1 | 510.2.w.c | ✓ | 68 | |
51.g | odd | 8 | 1 | 510.2.w.d | yes | 68 | |
85.n | odd | 8 | 1 | 510.2.z.d | yes | 68 | |
255.v | even | 8 | 1 | inner | 510.2.z.c | yes | 68 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
510.2.w.c | ✓ | 68 | 15.e | even | 4 | 1 | |
510.2.w.c | ✓ | 68 | 17.d | even | 8 | 1 | |
510.2.w.d | yes | 68 | 5.c | odd | 4 | 1 | |
510.2.w.d | yes | 68 | 51.g | odd | 8 | 1 | |
510.2.z.c | yes | 68 | 1.a | even | 1 | 1 | trivial |
510.2.z.c | yes | 68 | 255.v | even | 8 | 1 | inner |
510.2.z.d | yes | 68 | 3.b | odd | 2 | 1 | |
510.2.z.d | yes | 68 | 85.n | odd | 8 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(510, [\chi])\):
\( T_{7}^{68} + 4 T_{7}^{67} - 14 T_{7}^{66} - 92 T_{7}^{65} + 18 T_{7}^{64} + 704 T_{7}^{63} + \cdots + 90\!\cdots\!72 \) |
\( T_{11}^{68} - 4 T_{11}^{67} + 50 T_{11}^{66} - 284 T_{11}^{65} + 1650 T_{11}^{64} + \cdots + 16\!\cdots\!52 \) |