Properties

Label 5.9.c
Level $5$
Weight $9$
Character orbit 5.c
Rep. character $\chi_{5}(2,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $6$
Newform subspaces $1$
Sturm bound $4$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 5.c (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(4\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(5, [\chi])\).

Total New Old
Modular forms 10 10 0
Cusp forms 6 6 0
Eisenstein series 4 4 0

Trace form

\( 6 q - 2 q^{2} - 72 q^{3} + 220 q^{5} + 1752 q^{6} - 2352 q^{7} - 8220 q^{8} + 30870 q^{10} + 23192 q^{11} - 45912 q^{12} - 119142 q^{13} + 241440 q^{15} + 218616 q^{16} - 265502 q^{17} - 454062 q^{18} + 412260 q^{20}+ \cdots - 345959698 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(5, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
5.9.c.a 5.c 5.c $6$ $2.037$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 5.9.c.a \(-2\) \(-72\) \(220\) \(-2352\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{3}q^{2}+(-12-12\beta _{1}-\beta _{2}-\beta _{5})q^{3}+\cdots\)