Properties

Label 409.2.g.a
Level 409409
Weight 22
Character orbit 409.g
Analytic conductor 3.2663.266
Analytic rank 11
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [409,2,Mod(49,409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(409, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("409.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 409 409
Weight: k k == 2 2
Character orbit: [χ][\chi] == 409.g (of order 1212, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.265881442673.26588144267
Analytic rank: 11
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ1222)q2+(ζ122+ζ121)q3+(ζ122+1)q4+(ζ123+2ζ12)q5+(ζ1232ζ12+3)q6+(2ζ1232ζ122)q7++(9ζ1239ζ122++12)q99+O(q100) q + (\zeta_{12}^{2} - 2) q^{2} + ( - \zeta_{12}^{2} + \zeta_{12} - 1) q^{3} + ( - \zeta_{12}^{2} + 1) q^{4} + ( - \zeta_{12}^{3} + 2 \zeta_{12}) q^{5} + (\zeta_{12}^{3} - 2 \zeta_{12} + 3) q^{6} + (2 \zeta_{12}^{3} - 2 \zeta_{12}^{2}) q^{7}+ \cdots + (9 \zeta_{12}^{3} - 9 \zeta_{12}^{2} + \cdots + 12) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q6q26q3+2q4+12q64q7+2q912q116q12+2q13+12q14+6q15+10q166q176q184q194q21+18q22+6q236q24++30q99+O(q100) 4 q - 6 q^{2} - 6 q^{3} + 2 q^{4} + 12 q^{6} - 4 q^{7} + 2 q^{9} - 12 q^{11} - 6 q^{12} + 2 q^{13} + 12 q^{14} + 6 q^{15} + 10 q^{16} - 6 q^{17} - 6 q^{18} - 4 q^{19} - 4 q^{21} + 18 q^{22} + 6 q^{23} - 6 q^{24}+ \cdots + 30 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/409Z)×\left(\mathbb{Z}/409\mathbb{Z}\right)^\times.

nn 2121
χ(n)\chi(n) ζ12\zeta_{12}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
−1.50000 + 0.866025i −2.36603 1.36603i 0.500000 0.866025i −1.73205 4.73205 −1.00000 3.73205i 1.73205i 2.23205 + 3.86603i 2.59808 1.50000i
192.1 −1.50000 0.866025i −2.36603 + 1.36603i 0.500000 + 0.866025i −1.73205 4.73205 −1.00000 + 3.73205i 1.73205i 2.23205 3.86603i 2.59808 + 1.50000i
217.1 −1.50000 0.866025i −0.633975 + 0.366025i 0.500000 + 0.866025i 1.73205 1.26795 −1.00000 0.267949i 1.73205i −1.23205 + 2.13397i −2.59808 1.50000i
360.1 −1.50000 + 0.866025i −0.633975 0.366025i 0.500000 0.866025i 1.73205 1.26795 −1.00000 + 0.267949i 1.73205i −1.23205 2.13397i −2.59808 + 1.50000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
409.g even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 409.2.g.a 4
409.g even 12 1 inner 409.2.g.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
409.2.g.a 4 1.a even 1 1 trivial
409.2.g.a 4 409.g even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+3T2+3 T_{2}^{2} + 3T_{2} + 3 acting on S2new(409,[χ])S_{2}^{\mathrm{new}}(409, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+3T+3)2 (T^{2} + 3 T + 3)^{2} Copy content Toggle raw display
33 T4+6T3++4 T^{4} + 6 T^{3} + \cdots + 4 Copy content Toggle raw display
55 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
77 T4+4T3++16 T^{4} + 4 T^{3} + \cdots + 16 Copy content Toggle raw display
1111 (T2+6T+18)2 (T^{2} + 6 T + 18)^{2} Copy content Toggle raw display
1313 T42T3++1 T^{4} - 2 T^{3} + \cdots + 1 Copy content Toggle raw display
1717 T4+6T3++9 T^{4} + 6 T^{3} + \cdots + 9 Copy content Toggle raw display
1919 T4+4T3++16 T^{4} + 4 T^{3} + \cdots + 16 Copy content Toggle raw display
2323 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
2929 T4+18T3++2916 T^{4} + 18 T^{3} + \cdots + 2916 Copy content Toggle raw display
3131 T4+16T3++676 T^{4} + 16 T^{3} + \cdots + 676 Copy content Toggle raw display
3737 T4+22T3++8836 T^{4} + 22 T^{3} + \cdots + 8836 Copy content Toggle raw display
4141 T4+12T3++576 T^{4} + 12 T^{3} + \cdots + 576 Copy content Toggle raw display
4343 (T24T+8)2 (T^{2} - 4 T + 8)^{2} Copy content Toggle raw display
4747 T412T3++1296 T^{4} - 12 T^{3} + \cdots + 1296 Copy content Toggle raw display
5353 T412T3++144 T^{4} - 12 T^{3} + \cdots + 144 Copy content Toggle raw display
5959 T424T3++4356 T^{4} - 24 T^{3} + \cdots + 4356 Copy content Toggle raw display
6161 T426T3++6889 T^{4} - 26 T^{3} + \cdots + 6889 Copy content Toggle raw display
6767 T4+28T3++7744 T^{4} + 28 T^{3} + \cdots + 7744 Copy content Toggle raw display
7171 (T2+6T+36)2 (T^{2} + 6 T + 36)^{2} Copy content Toggle raw display
7373 T434T3++20164 T^{4} - 34 T^{3} + \cdots + 20164 Copy content Toggle raw display
7979 (T210T+50)2 (T^{2} - 10 T + 50)^{2} Copy content Toggle raw display
8383 (T2+6T+6)2 (T^{2} + 6 T + 6)^{2} Copy content Toggle raw display
8989 (T2+12T12)2 (T^{2} + 12 T - 12)^{2} Copy content Toggle raw display
9797 T4+28T3++2209 T^{4} + 28 T^{3} + \cdots + 2209 Copy content Toggle raw display
show more
show less