gp: [N,k,chi] = [409,2,Mod(49,409)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(409, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([7]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("409.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 12 \zeta_{12} ζ 1 2 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 409 Z ) × \left(\mathbb{Z}/409\mathbb{Z}\right)^\times ( Z / 4 0 9 Z ) × .
n n n
21 21 2 1
χ ( n ) \chi(n) χ ( n )
ζ 12 \zeta_{12} ζ 1 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 2 + 3 T 2 + 3 T_{2}^{2} + 3T_{2} + 3 T 2 2 + 3 T 2 + 3
T2^2 + 3*T2 + 3
acting on S 2 n e w ( 409 , [ χ ] ) S_{2}^{\mathrm{new}}(409, [\chi]) S 2 n e w ( 4 0 9 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 3 T + 3 ) 2 (T^{2} + 3 T + 3)^{2} ( T 2 + 3 T + 3 ) 2
(T^2 + 3*T + 3)^2
3 3 3
T 4 + 6 T 3 + ⋯ + 4 T^{4} + 6 T^{3} + \cdots + 4 T 4 + 6 T 3 + ⋯ + 4
T^4 + 6*T^3 + 14*T^2 + 12*T + 4
5 5 5
( T 2 − 3 ) 2 (T^{2} - 3)^{2} ( T 2 − 3 ) 2
(T^2 - 3)^2
7 7 7
T 4 + 4 T 3 + ⋯ + 16 T^{4} + 4 T^{3} + \cdots + 16 T 4 + 4 T 3 + ⋯ + 1 6
T^4 + 4*T^3 + 20*T^2 + 32*T + 16
11 11 1 1
( T 2 + 6 T + 18 ) 2 (T^{2} + 6 T + 18)^{2} ( T 2 + 6 T + 1 8 ) 2
(T^2 + 6*T + 18)^2
13 13 1 3
T 4 − 2 T 3 + ⋯ + 1 T^{4} - 2 T^{3} + \cdots + 1 T 4 − 2 T 3 + ⋯ + 1
T^4 - 2*T^3 + 2*T^2 + 2*T + 1
17 17 1 7
T 4 + 6 T 3 + ⋯ + 9 T^{4} + 6 T^{3} + \cdots + 9 T 4 + 6 T 3 + ⋯ + 9
T^4 + 6*T^3 + 39*T^2 - 18*T + 9
19 19 1 9
T 4 + 4 T 3 + ⋯ + 16 T^{4} + 4 T^{3} + \cdots + 16 T 4 + 4 T 3 + ⋯ + 1 6
T^4 + 4*T^3 + 8*T^2 - 16*T + 16
23 23 2 3
T 4 − 6 T 3 + ⋯ + 36 T^{4} - 6 T^{3} + \cdots + 36 T 4 − 6 T 3 + ⋯ + 3 6
T^4 - 6*T^3 + 6*T^2 + 36*T + 36
29 29 2 9
T 4 + 18 T 3 + ⋯ + 2916 T^{4} + 18 T^{3} + \cdots + 2916 T 4 + 1 8 T 3 + ⋯ + 2 9 1 6
T^4 + 18*T^3 + 162*T^2 + 972*T + 2916
31 31 3 1
T 4 + 16 T 3 + ⋯ + 676 T^{4} + 16 T^{3} + \cdots + 676 T 4 + 1 6 T 3 + ⋯ + 6 7 6
T^4 + 16*T^3 + 128*T^2 + 416*T + 676
37 37 3 7
T 4 + 22 T 3 + ⋯ + 8836 T^{4} + 22 T^{3} + \cdots + 8836 T 4 + 2 2 T 3 + ⋯ + 8 8 3 6
T^4 + 22*T^3 + 290*T^2 + 2444*T + 8836
41 41 4 1
T 4 + 12 T 3 + ⋯ + 576 T^{4} + 12 T^{3} + \cdots + 576 T 4 + 1 2 T 3 + ⋯ + 5 7 6
T^4 + 12*T^3 + 24*T^2 - 288*T + 576
43 43 4 3
( T 2 − 4 T + 8 ) 2 (T^{2} - 4 T + 8)^{2} ( T 2 − 4 T + 8 ) 2
(T^2 - 4*T + 8)^2
47 47 4 7
T 4 − 12 T 3 + ⋯ + 1296 T^{4} - 12 T^{3} + \cdots + 1296 T 4 − 1 2 T 3 + ⋯ + 1 2 9 6
T^4 - 12*T^3 + 180*T^2 - 864*T + 1296
53 53 5 3
T 4 − 12 T 3 + ⋯ + 144 T^{4} - 12 T^{3} + \cdots + 144 T 4 − 1 2 T 3 + ⋯ + 1 4 4
T^4 - 12*T^3 + 156*T^2 + 144*T + 144
59 59 5 9
T 4 − 24 T 3 + ⋯ + 4356 T^{4} - 24 T^{3} + \cdots + 4356 T 4 − 2 4 T 3 + ⋯ + 4 3 5 6
T^4 - 24*T^3 + 288*T^2 - 1584*T + 4356
61 61 6 1
T 4 − 26 T 3 + ⋯ + 6889 T^{4} - 26 T^{3} + \cdots + 6889 T 4 − 2 6 T 3 + ⋯ + 6 8 8 9
T^4 - 26*T^3 + 338*T^2 - 2158*T + 6889
67 67 6 7
T 4 + 28 T 3 + ⋯ + 7744 T^{4} + 28 T^{3} + \cdots + 7744 T 4 + 2 8 T 3 + ⋯ + 7 7 4 4
T^4 + 28*T^3 + 296*T^2 + 1760*T + 7744
71 71 7 1
( T 2 + 6 T + 36 ) 2 (T^{2} + 6 T + 36)^{2} ( T 2 + 6 T + 3 6 ) 2
(T^2 + 6*T + 36)^2
73 73 7 3
T 4 − 34 T 3 + ⋯ + 20164 T^{4} - 34 T^{3} + \cdots + 20164 T 4 − 3 4 T 3 + ⋯ + 2 0 1 6 4
T^4 - 34*T^3 + 458*T^2 - 3692*T + 20164
79 79 7 9
( T 2 − 10 T + 50 ) 2 (T^{2} - 10 T + 50)^{2} ( T 2 − 1 0 T + 5 0 ) 2
(T^2 - 10*T + 50)^2
83 83 8 3
( T 2 + 6 T + 6 ) 2 (T^{2} + 6 T + 6)^{2} ( T 2 + 6 T + 6 ) 2
(T^2 + 6*T + 6)^2
89 89 8 9
( T 2 + 12 T − 12 ) 2 (T^{2} + 12 T - 12)^{2} ( T 2 + 1 2 T − 1 2 ) 2
(T^2 + 12*T - 12)^2
97 97 9 7
T 4 + 28 T 3 + ⋯ + 2209 T^{4} + 28 T^{3} + \cdots + 2209 T 4 + 2 8 T 3 + ⋯ + 2 2 0 9
T^4 + 28*T^3 + 197*T^2 - 94*T + 2209
show more
show less