Properties

Label 369.2.f.b
Level $369$
Weight $2$
Character orbit 369.f
Analytic conductor $2.946$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [369,2,Mod(73,369)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(369, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("369.73");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 369 = 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 369.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.94647983459\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{2} + q^{4} + (2 i - 2) q^{7} - 3 i q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q - i q^{2} + q^{4} + (2 i - 2) q^{7} - 3 i q^{8} + ( - 4 i + 4) q^{11} + ( - 3 i + 3) q^{13} + (2 i + 2) q^{14} - q^{16} + ( - 3 i - 3) q^{17} + (4 i + 4) q^{19} + ( - 4 i - 4) q^{22} + 4 q^{23} + 5 q^{25} + ( - 3 i - 3) q^{26} + (2 i - 2) q^{28} + (7 i - 7) q^{29} - 4 q^{31} - 5 i q^{32} + (3 i - 3) q^{34} - 8 q^{37} + ( - 4 i + 4) q^{38} + (5 i + 4) q^{41} - 8 i q^{43} + ( - 4 i + 4) q^{44} - 4 i q^{46} + (2 i + 2) q^{47} - i q^{49} - 5 i q^{50} + ( - 3 i + 3) q^{52} + (5 i - 5) q^{53} + (6 i + 6) q^{56} + (7 i + 7) q^{58} - 12 q^{59} + 8 i q^{61} + 4 i q^{62} - 7 q^{64} + ( - 3 i - 3) q^{68} + (6 i - 6) q^{71} + 2 i q^{73} + 8 i q^{74} + (4 i + 4) q^{76} + 16 i q^{77} + ( - 6 i + 6) q^{79} + ( - 4 i + 5) q^{82} + 8 q^{83} - 8 q^{86} + ( - 12 i - 12) q^{88} + (7 i - 7) q^{89} + 12 i q^{91} + 4 q^{92} + ( - 2 i + 2) q^{94} + (7 i + 7) q^{97} - q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{4} - 4 q^{7} + 8 q^{11} + 6 q^{13} + 4 q^{14} - 2 q^{16} - 6 q^{17} + 8 q^{19} - 8 q^{22} + 8 q^{23} + 10 q^{25} - 6 q^{26} - 4 q^{28} - 14 q^{29} - 8 q^{31} - 6 q^{34} - 16 q^{37} + 8 q^{38} + 8 q^{41} + 8 q^{44} + 4 q^{47} + 6 q^{52} - 10 q^{53} + 12 q^{56} + 14 q^{58} - 24 q^{59} - 14 q^{64} - 6 q^{68} - 12 q^{71} + 8 q^{76} + 12 q^{79} + 10 q^{82} + 16 q^{83} - 16 q^{86} - 24 q^{88} - 14 q^{89} + 8 q^{92} + 4 q^{94} + 14 q^{97} - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/369\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(334\)
\(\chi(n)\) \(1\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
73.1
1.00000i
1.00000i
1.00000i 0 1.00000 0 0 −2.00000 + 2.00000i 3.00000i 0 0
91.1 1.00000i 0 1.00000 0 0 −2.00000 2.00000i 3.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
41.c even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 369.2.f.b yes 2
3.b odd 2 1 369.2.f.a 2
41.c even 4 1 inner 369.2.f.b yes 2
123.f odd 4 1 369.2.f.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
369.2.f.a 2 3.b odd 2 1
369.2.f.a 2 123.f odd 4 1
369.2.f.b yes 2 1.a even 1 1 trivial
369.2.f.b yes 2 41.c even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(369, [\chi])\):

\( T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 8T_{11} + 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 8 \) Copy content Toggle raw display
$11$ \( T^{2} - 8T + 32 \) Copy content Toggle raw display
$13$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
$17$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$19$ \( T^{2} - 8T + 32 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 14T + 98 \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( (T + 8)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 8T + 41 \) Copy content Toggle raw display
$43$ \( T^{2} + 64 \) Copy content Toggle raw display
$47$ \( T^{2} - 4T + 8 \) Copy content Toggle raw display
$53$ \( T^{2} + 10T + 50 \) Copy content Toggle raw display
$59$ \( (T + 12)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 64 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 12T + 72 \) Copy content Toggle raw display
$73$ \( T^{2} + 4 \) Copy content Toggle raw display
$79$ \( T^{2} - 12T + 72 \) Copy content Toggle raw display
$83$ \( (T - 8)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 14T + 98 \) Copy content Toggle raw display
$97$ \( T^{2} - 14T + 98 \) Copy content Toggle raw display
show more
show less