Properties

Label 369.2.d.c
Level $369$
Weight $2$
Character orbit 369.d
Analytic conductor $2.946$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [369,2,Mod(163,369)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(369, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("369.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 369 = 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 369.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.94647983459\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 41)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{4} - 2 q^{5} + \beta q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{4} - 2 q^{5} + \beta q^{7} - 3 q^{8} - 2 q^{10} + \beta q^{11} + 2 \beta q^{13} + \beta q^{14} - q^{16} - \beta q^{19} + 2 q^{20} + \beta q^{22} - q^{25} + 2 \beta q^{26} - \beta q^{28} - 2 \beta q^{29} - 8 q^{31} + 5 q^{32} - 2 \beta q^{35} + 2 q^{37} - \beta q^{38} + 6 q^{40} + (2 \beta + 3) q^{41} + 4 q^{43} - \beta q^{44} - \beta q^{47} - q^{49} - q^{50} - 2 \beta q^{52} + 2 \beta q^{53} - 2 \beta q^{55} - 3 \beta q^{56} - 2 \beta q^{58} - 4 q^{59} - 2 q^{61} - 8 q^{62} + 7 q^{64} - 4 \beta q^{65} + 3 \beta q^{67} - 2 \beta q^{70} + 3 \beta q^{71} + 14 q^{73} + 2 q^{74} + \beta q^{76} - 8 q^{77} + \beta q^{79} + 2 q^{80} + (2 \beta + 3) q^{82} + 12 q^{83} + 4 q^{86} - 3 \beta q^{88} + 4 \beta q^{89} - 16 q^{91} - \beta q^{94} + 2 \beta q^{95} - q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} - 4 q^{5} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 2 q^{4} - 4 q^{5} - 6 q^{8} - 4 q^{10} - 2 q^{16} + 4 q^{20} - 2 q^{25} - 16 q^{31} + 10 q^{32} + 4 q^{37} + 12 q^{40} + 6 q^{41} + 8 q^{43} - 2 q^{49} - 2 q^{50} - 8 q^{59} - 4 q^{61} - 16 q^{62} + 14 q^{64} + 28 q^{73} + 4 q^{74} - 16 q^{77} + 4 q^{80} + 6 q^{82} + 24 q^{83} + 8 q^{86} - 32 q^{91} - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/369\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(334\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
163.1
1.41421i
1.41421i
1.00000 0 −1.00000 −2.00000 0 2.82843i −3.00000 0 −2.00000
163.2 1.00000 0 −1.00000 −2.00000 0 2.82843i −3.00000 0 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
41.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 369.2.d.c 2
3.b odd 2 1 41.2.b.a 2
12.b even 2 1 656.2.d.c 2
15.d odd 2 1 1025.2.d.a 2
15.e even 4 2 1025.2.c.b 4
24.f even 2 1 2624.2.d.b 2
24.h odd 2 1 2624.2.d.a 2
41.b even 2 1 inner 369.2.d.c 2
123.b odd 2 1 41.2.b.a 2
123.f odd 4 2 1681.2.a.a 2
492.d even 2 1 656.2.d.c 2
615.h odd 2 1 1025.2.d.a 2
615.p even 4 2 1025.2.c.b 4
984.m odd 2 1 2624.2.d.a 2
984.p even 2 1 2624.2.d.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
41.2.b.a 2 3.b odd 2 1
41.2.b.a 2 123.b odd 2 1
369.2.d.c 2 1.a even 1 1 trivial
369.2.d.c 2 41.b even 2 1 inner
656.2.d.c 2 12.b even 2 1
656.2.d.c 2 492.d even 2 1
1025.2.c.b 4 15.e even 4 2
1025.2.c.b 4 615.p even 4 2
1025.2.d.a 2 15.d odd 2 1
1025.2.d.a 2 615.h odd 2 1
1681.2.a.a 2 123.f odd 4 2
2624.2.d.a 2 24.h odd 2 1
2624.2.d.a 2 984.m odd 2 1
2624.2.d.b 2 24.f even 2 1
2624.2.d.b 2 984.p even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(369, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 2)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 8 \) Copy content Toggle raw display
$11$ \( T^{2} + 8 \) Copy content Toggle raw display
$13$ \( T^{2} + 32 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 8 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 32 \) Copy content Toggle raw display
$31$ \( (T + 8)^{2} \) Copy content Toggle raw display
$37$ \( (T - 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 6T + 41 \) Copy content Toggle raw display
$43$ \( (T - 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 8 \) Copy content Toggle raw display
$53$ \( T^{2} + 32 \) Copy content Toggle raw display
$59$ \( (T + 4)^{2} \) Copy content Toggle raw display
$61$ \( (T + 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 72 \) Copy content Toggle raw display
$71$ \( T^{2} + 72 \) Copy content Toggle raw display
$73$ \( (T - 14)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 8 \) Copy content Toggle raw display
$83$ \( (T - 12)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 128 \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less