Properties

Label 34.2.b
Level $34$
Weight $2$
Character orbit 34.b
Rep. character $\chi_{34}(33,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $9$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 34 = 2 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 34.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(9\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(34, [\chi])\).

Total New Old
Modular forms 6 2 4
Cusp forms 2 2 0
Eisenstein series 4 0 4

Trace form

\( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8} - 10 q^{9} + 4 q^{13} + 16 q^{15} + 2 q^{16} - 6 q^{17} + 10 q^{18} - 8 q^{19} - 6 q^{25} - 4 q^{26} - 16 q^{30} - 2 q^{32} + 16 q^{33} + 6 q^{34} - 10 q^{36} + 8 q^{38}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(34, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
34.2.b.a 34.b 17.b $2$ $0.271$ \(\Q(\sqrt{-2}) \) None 34.2.b.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+\beta q^{3}+q^{4}-\beta q^{5}-\beta q^{6}-q^{8}+\cdots\)