Defining parameters
Level: | \( N \) | \(=\) | \( 3381 = 3 \cdot 7^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3381.r (of order \(11\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q(\zeta_{11})\) | ||
Sturm bound: | \(896\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3381, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4640 | 1640 | 3000 |
Cusp forms | 4320 | 1640 | 2680 |
Eisenstein series | 320 | 0 | 320 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3381, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(3381, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3381, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(161, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(483, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1127, [\chi])\)\(^{\oplus 2}\)