Properties

Label 24.2.a
Level $24$
Weight $2$
Character orbit 24.a
Rep. character $\chi_{24}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $8$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 24.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(8\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(24))\).

Total New Old
Modular forms 8 1 7
Cusp forms 1 1 0
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim.
\(-\)\(+\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(1\)

Trace form

\( q - q^{3} - 2q^{5} + q^{9} + O(q^{10}) \) \( q - q^{3} - 2q^{5} + q^{9} + 4q^{11} - 2q^{13} + 2q^{15} + 2q^{17} - 4q^{19} - 8q^{23} - q^{25} - q^{27} + 6q^{29} + 8q^{31} - 4q^{33} + 6q^{37} + 2q^{39} - 6q^{41} + 4q^{43} - 2q^{45} - 7q^{49} - 2q^{51} - 2q^{53} - 8q^{55} + 4q^{57} + 4q^{59} - 2q^{61} + 4q^{65} - 4q^{67} + 8q^{69} + 8q^{71} + 10q^{73} + q^{75} - 8q^{79} + q^{81} - 4q^{83} - 4q^{85} - 6q^{87} - 6q^{89} - 8q^{93} + 8q^{95} + 2q^{97} + 4q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3
24.2.a.a \(1\) \(0.192\) \(\Q\) None \(0\) \(-1\) \(-2\) \(0\) \(-\) \(+\) \(q-q^{3}-2q^{5}+q^{9}+4q^{11}-2q^{13}+\cdots\)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + T \)
$5$ \( 1 + 2 T + 5 T^{2} \)
$7$ \( 1 + 7 T^{2} \)
$11$ \( 1 - 4 T + 11 T^{2} \)
$13$ \( 1 + 2 T + 13 T^{2} \)
$17$ \( 1 - 2 T + 17 T^{2} \)
$19$ \( 1 + 4 T + 19 T^{2} \)
$23$ \( 1 + 8 T + 23 T^{2} \)
$29$ \( 1 - 6 T + 29 T^{2} \)
$31$ \( 1 - 8 T + 31 T^{2} \)
$37$ \( 1 - 6 T + 37 T^{2} \)
$41$ \( 1 + 6 T + 41 T^{2} \)
$43$ \( 1 - 4 T + 43 T^{2} \)
$47$ \( 1 + 47 T^{2} \)
$53$ \( 1 + 2 T + 53 T^{2} \)
$59$ \( 1 - 4 T + 59 T^{2} \)
$61$ \( 1 + 2 T + 61 T^{2} \)
$67$ \( 1 + 4 T + 67 T^{2} \)
$71$ \( 1 - 8 T + 71 T^{2} \)
$73$ \( 1 - 10 T + 73 T^{2} \)
$79$ \( 1 + 8 T + 79 T^{2} \)
$83$ \( 1 + 4 T + 83 T^{2} \)
$89$ \( 1 + 6 T + 89 T^{2} \)
$97$ \( 1 - 2 T + 97 T^{2} \)
show more
show less