Properties

Label 211.5.b.a.210.3
Level $211$
Weight $5$
Character 211.210
Self dual yes
Analytic conductor $21.811$
Analytic rank $0$
Dimension $3$
CM discriminant -211
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [211,5,Mod(210,211)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(211, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("211.210");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 211 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 211.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.8110622107\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.5697.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 15x - 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 210.3
Root \(4.34849\) of defining polynomial
Character \(\chi\) \(=\) 211.210

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0000 q^{4} +29.3774 q^{5} +81.0000 q^{9} +O(q^{10})\) \(q+16.0000 q^{4} +29.3774 q^{5} +81.0000 q^{9} +240.017 q^{11} -310.979 q^{13} +256.000 q^{16} -285.490 q^{19} +470.038 q^{20} +238.032 q^{25} +1296.00 q^{36} -2733.95 q^{37} +298.192 q^{43} +3840.27 q^{44} +2379.57 q^{45} +2268.62 q^{47} +2401.00 q^{49} -4975.67 q^{52} +5407.00 q^{53} +7051.07 q^{55} +1687.00 q^{59} +4096.00 q^{64} -9135.76 q^{65} -8525.77 q^{71} -6433.00 q^{73} -4567.84 q^{76} +10617.4 q^{79} +7520.61 q^{80} +6561.00 q^{81} -11753.0 q^{83} -8386.95 q^{95} +19441.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 48 q^{4} + 243 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 48 q^{4} + 243 q^{9} + 768 q^{16} + 1875 q^{25} + 3888 q^{36} + 7203 q^{49} + 16221 q^{53} + 12453 q^{55} + 5061 q^{59} + 12288 q^{64} - 5667 q^{65} - 19299 q^{73} + 19683 q^{81} - 35259 q^{83} - 52827 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/211\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 16.0000 1.00000
\(5\) 29.3774 1.17510 0.587548 0.809189i \(-0.300093\pi\)
0.587548 + 0.809189i \(0.300093\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 81.0000 1.00000
\(10\) 0 0
\(11\) 240.017 1.98361 0.991805 0.127761i \(-0.0407790\pi\)
0.991805 + 0.127761i \(0.0407790\pi\)
\(12\) 0 0
\(13\) −310.979 −1.84011 −0.920057 0.391784i \(-0.871858\pi\)
−0.920057 + 0.391784i \(0.871858\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) −285.490 −0.790831 −0.395415 0.918502i \(-0.629399\pi\)
−0.395415 + 0.918502i \(0.629399\pi\)
\(20\) 470.038 1.17510
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 238.032 0.380851
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 1296.00 1.00000
\(37\) −2733.95 −1.99704 −0.998522 0.0543574i \(-0.982689\pi\)
−0.998522 + 0.0543574i \(0.982689\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 298.192 0.161272 0.0806361 0.996744i \(-0.474305\pi\)
0.0806361 + 0.996744i \(0.474305\pi\)
\(44\) 3840.27 1.98361
\(45\) 2379.57 1.17510
\(46\) 0 0
\(47\) 2268.62 1.02699 0.513494 0.858093i \(-0.328351\pi\)
0.513494 + 0.858093i \(0.328351\pi\)
\(48\) 0 0
\(49\) 2401.00 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) −4975.67 −1.84011
\(53\) 5407.00 1.92488 0.962442 0.271487i \(-0.0875153\pi\)
0.962442 + 0.271487i \(0.0875153\pi\)
\(54\) 0 0
\(55\) 7051.07 2.33093
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1687.00 0.484631 0.242315 0.970198i \(-0.422093\pi\)
0.242315 + 0.970198i \(0.422093\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 4096.00 1.00000
\(65\) −9135.76 −2.16231
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8525.77 −1.69128 −0.845642 0.533750i \(-0.820782\pi\)
−0.845642 + 0.533750i \(0.820782\pi\)
\(72\) 0 0
\(73\) −6433.00 −1.20717 −0.603584 0.797299i \(-0.706261\pi\)
−0.603584 + 0.797299i \(0.706261\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −4567.84 −0.790831
\(77\) 0 0
\(78\) 0 0
\(79\) 10617.4 1.70123 0.850617 0.525786i \(-0.176229\pi\)
0.850617 + 0.525786i \(0.176229\pi\)
\(80\) 7520.61 1.17510
\(81\) 6561.00 1.00000
\(82\) 0 0
\(83\) −11753.0 −1.70605 −0.853027 0.521867i \(-0.825236\pi\)
−0.853027 + 0.521867i \(0.825236\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8386.95 −0.929302
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 19441.4 1.98361
\(100\) 3808.51 0.380851
\(101\) −7206.36 −0.706436 −0.353218 0.935541i \(-0.614913\pi\)
−0.353218 + 0.935541i \(0.614913\pi\)
\(102\) 0 0
\(103\) −13260.3 −1.24991 −0.624954 0.780662i \(-0.714882\pi\)
−0.624954 + 0.780662i \(0.714882\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19903.8 −1.73848 −0.869239 0.494392i \(-0.835391\pi\)
−0.869239 + 0.494392i \(0.835391\pi\)
\(108\) 0 0
\(109\) −23713.0 −1.99588 −0.997938 0.0641871i \(-0.979555\pi\)
−0.997938 + 0.0641871i \(0.979555\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 19502.1 1.52730 0.763651 0.645630i \(-0.223405\pi\)
0.763651 + 0.645630i \(0.223405\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −25189.3 −1.84011
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 42967.1 2.93471
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11368.1 −0.727560
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6159.88 0.328194 0.164097 0.986444i \(-0.447529\pi\)
0.164097 + 0.986444i \(0.447529\pi\)
\(138\) 0 0
\(139\) 6892.81 0.356752 0.178376 0.983962i \(-0.442916\pi\)
0.178376 + 0.983962i \(0.442916\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −74640.3 −3.65007
\(144\) 20736.0 1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −43743.2 −1.99704
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) −19505.7 −0.855477 −0.427738 0.903903i \(-0.640690\pi\)
−0.427738 + 0.903903i \(0.640690\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −39913.0 −1.50224 −0.751120 0.660166i \(-0.770486\pi\)
−0.751120 + 0.660166i \(0.770486\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 68147.1 2.38602
\(170\) 0 0
\(171\) −23124.7 −0.790831
\(172\) 4771.08 0.161272
\(173\) 59766.4 1.99694 0.998469 0.0553130i \(-0.0176157\pi\)
0.998469 + 0.0553130i \(0.0176157\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 61444.3 1.98361
\(177\) 0 0
\(178\) 0 0
\(179\) −43675.5 −1.36311 −0.681557 0.731765i \(-0.738697\pi\)
−0.681557 + 0.731765i \(0.738697\pi\)
\(180\) 38073.1 1.17510
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −80316.4 −2.34672
\(186\) 0 0
\(187\) 0 0
\(188\) 36297.9 1.02699
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 65197.1 1.75030 0.875152 0.483848i \(-0.160761\pi\)
0.875152 + 0.483848i \(0.160761\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 38416.0 1.00000
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −76016.3 −1.91955 −0.959777 0.280762i \(-0.909413\pi\)
−0.959777 + 0.280762i \(0.909413\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −79610.7 −1.84011
\(209\) −68522.4 −1.56870
\(210\) 0 0
\(211\) 44521.0 1.00000
\(212\) 86512.0 1.92488
\(213\) 0 0
\(214\) 0 0
\(215\) 8760.11 0.189510
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 112817. 2.33093
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 19280.6 0.380851
\(226\) 0 0
\(227\) 49042.0 0.951736 0.475868 0.879517i \(-0.342134\pi\)
0.475868 + 0.879517i \(0.342134\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 66646.1 1.20681
\(236\) 26992.0 0.484631
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −115355. −1.98611 −0.993055 0.117653i \(-0.962463\pi\)
−0.993055 + 0.117653i \(0.962463\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 70535.1 1.17510
\(246\) 0 0
\(247\) 88781.5 1.45522
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 65536.0 1.00000
\(257\) 1318.04 0.0199555 0.00997773 0.999950i \(-0.496824\pi\)
0.00997773 + 0.999950i \(0.496824\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −146172. −2.16231
\(261\) 0 0
\(262\) 0 0
\(263\) −39113.0 −0.565470 −0.282735 0.959198i \(-0.591242\pi\)
−0.282735 + 0.959198i \(0.591242\pi\)
\(264\) 0 0
\(265\) 158844. 2.26192
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −136153. −1.88158 −0.940790 0.338991i \(-0.889914\pi\)
−0.940790 + 0.338991i \(0.889914\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 57131.6 0.755459
\(276\) 0 0
\(277\) −24092.4 −0.313993 −0.156997 0.987599i \(-0.550181\pi\)
−0.156997 + 0.987599i \(0.550181\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5100.79 0.0645989 0.0322994 0.999478i \(-0.489717\pi\)
0.0322994 + 0.999478i \(0.489717\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) −136412. −1.69128
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 83521.0 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) −102928. −1.20717
\(293\) −31073.0 −0.361949 −0.180975 0.983488i \(-0.557925\pi\)
−0.180975 + 0.983488i \(0.557925\pi\)
\(294\) 0 0
\(295\) 49559.7 0.569488
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −73085.4 −0.790831
\(305\) 0 0
\(306\) 0 0
\(307\) 184854. 1.96134 0.980669 0.195676i \(-0.0626902\pi\)
0.980669 + 0.195676i \(0.0626902\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −144158. −1.49045 −0.745226 0.666812i \(-0.767658\pi\)
−0.745226 + 0.666812i \(0.767658\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 169878. 1.70123
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 120330. 1.17510
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 104976. 1.00000
\(325\) −74022.9 −0.700809
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −162059. −1.47917 −0.739584 0.673064i \(-0.764978\pi\)
−0.739584 + 0.673064i \(0.764978\pi\)
\(332\) −188048. −1.70605
\(333\) −221450. −1.99704
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −134108. −1.18085 −0.590426 0.807092i \(-0.701040\pi\)
−0.590426 + 0.807092i \(0.701040\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 73840.0 0.613243 0.306622 0.951832i \(-0.400801\pi\)
0.306622 + 0.951832i \(0.400801\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) −250465. −1.98742
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −713.000 −0.00553224 −0.00276612 0.999996i \(-0.500880\pi\)
−0.00276612 + 0.999996i \(0.500880\pi\)
\(360\) 0 0
\(361\) −48816.5 −0.374587
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −188985. −1.41854
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) −134191. −0.929302
\(381\) 0 0
\(382\) 0 0
\(383\) 245939. 1.67660 0.838302 0.545206i \(-0.183549\pi\)
0.838302 + 0.545206i \(0.183549\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 24153.6 0.161272
\(388\) 0 0
\(389\) 290770. 1.92155 0.960773 0.277336i \(-0.0894516\pi\)
0.960773 + 0.277336i \(0.0894516\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 311912. 1.99911
\(396\) 311062. 1.98361
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 60936.1 0.380851
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −115302. −0.706436
\(405\) 192745. 1.17510
\(406\) 0 0
\(407\) −656194. −3.96135
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −212164. −1.24991
\(413\) 0 0
\(414\) 0 0
\(415\) −345273. −2.00478
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 335374. 1.91030 0.955149 0.296127i \(-0.0956950\pi\)
0.955149 + 0.296127i \(0.0956950\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 183758. 1.02699
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −318461. −1.73848
\(429\) 0 0
\(430\) 0 0
\(431\) −261152. −1.40585 −0.702923 0.711265i \(-0.748122\pi\)
−0.702923 + 0.711265i \(0.748122\pi\)
\(432\) 0 0
\(433\) 54047.0 0.288268 0.144134 0.989558i \(-0.453960\pi\)
0.144134 + 0.989558i \(0.453960\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −379408. −1.99588
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 194481. 1.00000
\(442\) 0 0
\(443\) 3244.16 0.0165308 0.00826541 0.999966i \(-0.497369\pi\)
0.00826541 + 0.999966i \(0.497369\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 312034. 1.52730
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −428078. −1.96286 −0.981430 0.191823i \(-0.938560\pi\)
−0.981430 + 0.191823i \(0.938560\pi\)
\(468\) −403029. −1.84011
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 71571.1 0.319901
\(474\) 0 0
\(475\) −67955.6 −0.301188
\(476\) 0 0
\(477\) 437967. 1.92488
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 850203. 3.67479
\(482\) 0 0
\(483\) 0 0
\(484\) 687473. 2.93471
\(485\) 0 0
\(486\) 0 0
\(487\) 381287. 1.60766 0.803830 0.594859i \(-0.202792\pi\)
0.803830 + 0.594859i \(0.202792\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −448206. −1.85915 −0.929576 0.368632i \(-0.879826\pi\)
−0.929576 + 0.368632i \(0.879826\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 571137. 2.33093
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −181890. −0.727560
\(501\) 0 0
\(502\) 0 0
\(503\) −263373. −1.04096 −0.520482 0.853872i \(-0.674248\pi\)
−0.520482 + 0.853872i \(0.674248\pi\)
\(504\) 0 0
\(505\) −211704. −0.830131
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 344445. 1.32949 0.664743 0.747072i \(-0.268541\pi\)
0.664743 + 0.747072i \(0.268541\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −389552. −1.46876
\(516\) 0 0
\(517\) 544506. 2.03714
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 147364. 0.542895 0.271447 0.962453i \(-0.412498\pi\)
0.271447 + 0.962453i \(0.412498\pi\)
\(522\) 0 0
\(523\) 476982. 1.74381 0.871903 0.489678i \(-0.162886\pi\)
0.871903 + 0.489678i \(0.162886\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 279841. 1.00000
\(530\) 0 0
\(531\) 136647. 0.484631
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −584723. −2.04288
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 576280. 1.98361
\(540\) 0 0
\(541\) 39546.7 0.135119 0.0675594 0.997715i \(-0.478479\pi\)
0.0675594 + 0.997715i \(0.478479\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −696626. −2.34535
\(546\) 0 0
\(547\) 49607.0 0.165794 0.0828969 0.996558i \(-0.473583\pi\)
0.0828969 + 0.996558i \(0.473583\pi\)
\(548\) 98558.1 0.328194
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 110285. 0.356752
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) −92731.6 −0.296759
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 572921. 1.79473
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) −1.19424e6 −3.65007
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 331776. 1.00000
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.29777e6 3.81822
\(584\) 0 0
\(585\) −739997. −2.16231
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −699892. −1.99704
\(593\) −522280. −1.48523 −0.742615 0.669718i \(-0.766415\pi\)
−0.742615 + 0.669718i \(0.766415\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 600131. 1.66149 0.830744 0.556655i \(-0.187915\pi\)
0.830744 + 0.556655i \(0.187915\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −312092. −0.855477
\(605\) 1.26226e6 3.44856
\(606\) 0 0
\(607\) −267673. −0.726486 −0.363243 0.931694i \(-0.618331\pi\)
−0.363243 + 0.931694i \(0.618331\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −705493. −1.88978
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −482736. −1.23580
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −390553. −0.980892 −0.490446 0.871472i \(-0.663166\pi\)
−0.490446 + 0.871472i \(0.663166\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −746661. −1.84011
\(638\) 0 0
\(639\) −690587. −1.69128
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 509307. 1.21667 0.608333 0.793682i \(-0.291839\pi\)
0.608333 + 0.793682i \(0.291839\pi\)
\(648\) 0 0
\(649\) 404908. 0.961319
\(650\) 0 0
\(651\) 0 0
\(652\) −638608. −1.50224
\(653\) 346207. 0.811913 0.405956 0.913892i \(-0.366938\pi\)
0.405956 + 0.913892i \(0.366938\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −521073. −1.20717
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 1.09035e6 2.38602
\(677\) 375182. 0.818588 0.409294 0.912403i \(-0.365775\pi\)
0.409294 + 0.912403i \(0.365775\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) −369995. −0.790831
\(685\) 180961. 0.385660
\(686\) 0 0
\(687\) 0 0
\(688\) 76337.2 0.161272
\(689\) −1.68147e6 −3.54201
\(690\) 0 0
\(691\) −950588. −1.99084 −0.995420 0.0956016i \(-0.969523\pi\)
−0.995420 + 0.0956016i \(0.969523\pi\)
\(692\) 956262. 1.99694
\(693\) 0 0
\(694\) 0 0
\(695\) 202493. 0.419218
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 780516. 1.57932
\(704\) 983109. 1.98361
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −251098. −0.499517 −0.249759 0.968308i \(-0.580351\pi\)
−0.249759 + 0.968308i \(0.580351\pi\)
\(710\) 0 0
\(711\) 860010. 1.70123
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −2.19274e6 −4.28918
\(716\) −698809. −1.36311
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 609170. 1.17510
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 531441. 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 1.05405e6 1.96179 0.980896 0.194531i \(-0.0623184\pi\)
0.980896 + 0.194531i \(0.0623184\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) −1.28506e6 −2.34672
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −951993. −1.70605
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 580766. 1.02699
\(753\) 0 0
\(754\) 0 0
\(755\) −573028. −1.00527
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −524622. −0.891776
\(768\) 0 0
\(769\) 89010.4 0.150518 0.0752590 0.997164i \(-0.476022\pi\)
0.0752590 + 0.997164i \(0.476022\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.04315e6 1.75030
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −2.04633e6 −3.35485
\(782\) 0 0
\(783\) 0 0
\(784\) 614656. 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) −705838. −1.13961 −0.569804 0.821781i \(-0.692981\pi\)
−0.569804 + 0.821781i \(0.692981\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −1.21626e6 −1.91955
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.54403e6 −2.39455
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 670687. 1.02476 0.512381 0.858758i \(-0.328764\pi\)
0.512381 + 0.858758i \(0.328764\pi\)
\(810\) 0 0
\(811\) 1.31512e6 1.99951 0.999753 0.0222218i \(-0.00707400\pi\)
0.999753 + 0.0222218i \(0.00707400\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.17254e6 −1.76528
\(816\) 0 0
\(817\) −85130.9 −0.127539
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 941886. 1.39737 0.698686 0.715429i \(-0.253768\pi\)
0.698686 + 0.715429i \(0.253768\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.23759e6 1.80953 0.904767 0.425907i \(-0.140045\pi\)
0.904767 + 0.425907i \(0.140045\pi\)
\(828\) 0 0
\(829\) −1.24165e6 −1.80671 −0.903357 0.428890i \(-0.858905\pi\)
−0.903357 + 0.428890i \(0.858905\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.27377e6 −1.84011
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −1.09636e6 −1.56870
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 707281. 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 712336. 1.00000
\(845\) 2.00199e6 2.80380
\(846\) 0 0
\(847\) 0 0
\(848\) 1.38419e6 1.92488
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 1.33368e6 1.83297 0.916483 0.400075i \(-0.131016\pi\)
0.916483 + 0.400075i \(0.131016\pi\)
\(854\) 0 0
\(855\) −679343. −0.929302
\(856\) 0 0
\(857\) 1.09576e6 1.49195 0.745976 0.665973i \(-0.231983\pi\)
0.745976 + 0.665973i \(0.231983\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 140162. 0.189510
\(861\) 0 0
\(862\) 0 0
\(863\) 341858. 0.459012 0.229506 0.973307i \(-0.426289\pi\)
0.229506 + 0.973307i \(0.426289\pi\)
\(864\) 0 0
\(865\) 1.75578e6 2.34659
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.54836e6 3.37459
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 1.80507e6 2.33093
\(881\) −106364. −0.137038 −0.0685191 0.997650i \(-0.521827\pi\)
−0.0685191 + 0.997650i \(0.521827\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −708638. −0.900694 −0.450347 0.892854i \(-0.648700\pi\)
−0.450347 + 0.892854i \(0.648700\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.57475e6 1.98361
\(892\) 0 0
\(893\) −647667. −0.812174
\(894\) 0 0
\(895\) −1.28307e6 −1.60179
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 308489. 0.380851
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 784672. 0.951736
\(909\) −583715. −0.706436
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −2.82092e6 −3.38414
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.65134e6 3.11216
\(924\) 0 0
\(925\) −650767. −0.760575
\(926\) 0 0
\(927\) −1.07408e6 −1.24991
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −685461. −0.790831
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1.75531e6 −1.99929 −0.999644 0.0266785i \(-0.991507\pi\)
−0.999644 + 0.0266785i \(0.991507\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1.06634e6 1.20681
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 431872. 0.484631
\(945\) 0 0
\(946\) 0 0
\(947\) −1.07553e6 −1.19928 −0.599641 0.800269i \(-0.704690\pi\)
−0.599641 + 0.800269i \(0.704690\pi\)
\(948\) 0 0
\(949\) 2.00053e6 2.22133
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.71136e6 1.88432 0.942159 0.335165i \(-0.108792\pi\)
0.942159 + 0.335165i \(0.108792\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 923521. 1.00000
\(962\) 0 0
\(963\) −1.61221e6 −1.73848
\(964\) −1.84568e6 −1.98611
\(965\) 1.91532e6 2.05678
\(966\) 0 0
\(967\) −396775. −0.424318 −0.212159 0.977235i \(-0.568049\pi\)
−0.212159 + 0.977235i \(0.568049\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.12856e6 1.17510
\(981\) −1.92075e6 −1.99588
\(982\) 0 0
\(983\) 1.14745e6 1.18748 0.593739 0.804658i \(-0.297651\pi\)
0.593739 + 0.804658i \(0.297651\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 1.42050e6 1.45522
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.23316e6 −2.25566
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 211.5.b.a.210.3 3
211.210 odd 2 CM 211.5.b.a.210.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
211.5.b.a.210.3 3 1.1 even 1 trivial
211.5.b.a.210.3 3 211.210 odd 2 CM