Properties

Label 181.2.f.a
Level 181181
Weight 22
Character orbit 181.f
Analytic conductor 1.4451.445
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [181,2,Mod(49,181)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(181, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("181.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 181 181
Weight: k k == 2 2
Character orbit: [χ][\chi] == 181.f (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.445292276591.44529227659
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q22ζ6q3+ζ6q43q5+(4ζ62)q6+(2ζ61)q8+(ζ61)q9+(3ζ6+3)q10+(2ζ6+2)q12++(7ζ67)q98+O(q100) q + ( - \zeta_{6} - 1) q^{2} - 2 \zeta_{6} q^{3} + \zeta_{6} q^{4} - 3 q^{5} + (4 \zeta_{6} - 2) q^{6} + (2 \zeta_{6} - 1) q^{8} + (\zeta_{6} - 1) q^{9} + (3 \zeta_{6} + 3) q^{10} + ( - 2 \zeta_{6} + 2) q^{12} + \cdots + ( - 7 \zeta_{6} - 7) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q22q3+q46q5q9+9q10+2q12+q13+6q15+5q16+3q183q2012q23+6q24+8q258q276q299q322q36+21q98+O(q100) 2 q - 3 q^{2} - 2 q^{3} + q^{4} - 6 q^{5} - q^{9} + 9 q^{10} + 2 q^{12} + q^{13} + 6 q^{15} + 5 q^{16} + 3 q^{18} - 3 q^{20} - 12 q^{23} + 6 q^{24} + 8 q^{25} - 8 q^{27} - 6 q^{29} - 9 q^{32} - 2 q^{36}+ \cdots - 21 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/181Z)×\left(\mathbb{Z}/181\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) ζ6\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.50000 0.866025i −1.00000 1.73205i 0.500000 + 0.866025i −3.00000 3.46410i 0 1.73205i −0.500000 + 0.866025i 4.50000 + 2.59808i
133.1 −1.50000 + 0.866025i −1.00000 + 1.73205i 0.500000 0.866025i −3.00000 3.46410i 0 1.73205i −0.500000 0.866025i 4.50000 2.59808i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
181.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 181.2.f.a 2
181.f even 6 1 inner 181.2.f.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
181.2.f.a 2 1.a even 1 1 trivial
181.2.f.a 2 181.f even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+3T2+3 T_{2}^{2} + 3T_{2} + 3 acting on S2new(181,[χ])S_{2}^{\mathrm{new}}(181, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
33 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
55 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+12 T^{2} + 12 Copy content Toggle raw display
2323 T2+12T+48 T^{2} + 12T + 48 Copy content Toggle raw display
2929 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
3131 T2+48 T^{2} + 48 Copy content Toggle raw display
3737 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
4141 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
4343 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
4747 T2+18T+108 T^{2} + 18T + 108 Copy content Toggle raw display
5353 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
5959 (T6)2 (T - 6)^{2} Copy content Toggle raw display
6161 T2+12T+48 T^{2} + 12T + 48 Copy content Toggle raw display
6767 (T+14)2 (T + 14)^{2} Copy content Toggle raw display
7171 T2+48 T^{2} + 48 Copy content Toggle raw display
7373 T211T+121 T^{2} - 11T + 121 Copy content Toggle raw display
7979 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
8383 T26T+12 T^{2} - 6T + 12 Copy content Toggle raw display
8989 T2+12T+48 T^{2} + 12T + 48 Copy content Toggle raw display
9797 T215T+75 T^{2} - 15T + 75 Copy content Toggle raw display
show more
show less