Table of the dimensions of the spaces of Bianchi cusp forms for \(\Gamma_0(\mathfrak{n})\subseteq \SL(2,\mathcal{O}_K)\) for levels \(\mathfrak{n}\) ordered by norm, over \(K=\) \(\Q(\sqrt{-1}) \).

For each weight $w$, we show both the dimension $d$ of the space of cusp forms of weight $w$, and the dimension $n$ of the new subspace.

Displaying items 1-50 of 831 levels, showing only levels with positive cuspidal dimension.

Next

  weight 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
level label norm $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$
2.1 2 0 0 0 0 0 0 0 0 0 0 2 0 1 1 4 0 1 1 4 0 2 0 6 0 2 2 8 0 3 1 8 0 3 1 10 0 4 2 12 0 4 2 12 0
4.1 4 0 0 0 0 0 0 1 1 1 1 4 1 2 0 7 1 3 1 8 2 4 1 11 2 5 1 14 2 6 1 15 3 7 2               
5.1 5 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 0 0 0 4 0 2 0 6 0 0 0 8 0 2 0                     
5.2 5 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 0 0 0 4 0 2 0 6 0 0 0 8 0 2 0                     
8.1 8 0 0 0 0 1 1 2 0 3 1 6 0 5 2 10 0 7 2 12 0 9 3 16 0                              
9.1 9 0 0 1 1 0 0 3 3 1 1 6 4 1 1 9 5 2 2 11 7 3 1 14 8                              
10.1 10 0 0 0 0 1 1 0 0 0 0 4 0 2 0 8 0 2 0 8 0                                    
10.2 10 0 0 0 0 1 1 0 0 0 0 4 0 2 0 8 0 2 0 8 0                                    
13.1 13 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 0 0 0 4 0 2 0                                 
13.2 13 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 0 0 0 4 0 2 0                                 
16.1 16 1 1 1 1 4 2 5 2 8 3 11 3 12 4 17 4 16 5                                       
17.1 17 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 0 0 0                                       
17.2 17 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 0 0 0                                       
18.1 18 0 0 2 0 1 1 6 0 3 1 12 0 5 1 18 0                                          
20.1 20 0 0 0 0 2 0 2 0 2 0 8 0 4 0                                             
20.2 20 0 0 0 0 2 0 2 0 2 0 8 0 4 0                                             
25.1 25 1 1 1 1 1 1 1 1 1 1 5 2 1 1 9 3                                          
25.2 25 0 0 2 2 1 1 6 6 1 1 12 8 3 3                                             
25.3 25 1 1 1 1 1 1 1 1 1 1 5 2 1 1 9 3                                          
26.1 26 0 0 0 0 0 0 0 0 0 0 4 0 2 0                                             
26.2 26 0 0 0 0 0 0 0 0 0 0 4 0 2 0                                             
29.1 29 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 0                                          
29.2 29 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 0                                          
32.1 32 2 0 2 0 7 0 8 0 13 0 16 0                                                
34.1 34 0 0 0 0 0 0 0 0 1 1 4 0                                                
34.2 34 0 0 0 0 0 0 0 0 1 1 4 0                                                
36.1 36 0 0 4 1 3 1 12 1 7 0 22 2                                                
37.1 37 0 0 0 0 0 0 0 0 0 0 2 0 0 0                                             
37.2 37 0 0 0 0 0 0 0 0 0 0 2 0 0 0                                             
40.1 40 0 0 0 0 6 1 4 0 6 0                                                   
40.2 40 0 0 0 0 6 1 4 0 6 0                                                   
41.1 41 0 0 2 2 0 0 0 0 0 0 2 0 0 0                                             
41.2 41 0 0 2 2 0 0 0 0 0 0 2 0 0 0                                             
45.1 45 0 0 2 0 0 0 6 0 2 0 12 0                                                
45.2 45 0 0 2 0 0 0 6 0 2 0 12 0                                                
49.1 49 0 0 4 4 1 1 8 8 3 3 14 12                                                
50.1 50 2 0 2 0 5 1 2 0 2 0                                                   
50.2 50 0 0 4 0 7 1 12 0                                                      
50.3 50 2 0 2 0 5 1 2 0 2 0                                                   
52.1 52 0 0 0 0 0 0 2 0 2 0                                                   
52.2 52 0 0 0 0 0 0 2 0 2 0                                                   
53.1 53 0 0 0 0 0 0 0 0 0 0 2 0                                                
53.2 53 0 0 0 0 0 0 0 0 0 0 2 0                                                
61.1 61 0 0 0 0 0 0 0 0 0 0 2 0                                                
64.1 64 3 0 5 2 12 2 15 4 22 4                                                   
65.2 65 1 1 0 0 0 0 0 0 0 0                                                   
65.3 65 1 1 0 0 0 0 0 0 0 0                                                   
68.1 68 1 1 0 0 0 0 2 0                                                      
68.2 68 1 1 0 0 0 0 2 0                                                      
72.1 72 1 1 6 0 8 1 18 0                                                      

Next