Properties

Label 88.48.0-88.i.2.16
Level $88$
Index $48$
Genus $0$
Cusps $6$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $88$ $\SL_2$-level: $8$
Index: $48$ $\PSL_2$-index:$24$
Genus: $0 = 1 + \frac{ 24 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (of which $2$ are rational) Cusp widths $2^{2}\cdot4^{3}\cdot8$ Cusp orbits $1^{2}\cdot2^{2}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8J0

Level structure

$\GL_2(\Z/88\Z)$-generators: $\begin{bmatrix}7&44\\0&7\end{bmatrix}$, $\begin{bmatrix}25&16\\72&19\end{bmatrix}$, $\begin{bmatrix}25&36\\20&29\end{bmatrix}$, $\begin{bmatrix}53&68\\62&21\end{bmatrix}$, $\begin{bmatrix}85&72\\0&49\end{bmatrix}$
Contains $-I$: no $\quad$ (see 88.24.0.i.2 for the level structure with $-I$)
Cyclic 88-isogeny field degree: $24$
Cyclic 88-torsion field degree: $480$
Full 88-torsion field degree: $422400$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points but none with conductor small enough to be contained within the database of elliptic curves over $\Q$.

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
8.24.0-4.b.1.3 $8$ $2$ $2$ $0$ $0$
88.24.0-4.b.1.4 $88$ $2$ $2$ $0$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
88.96.0-88.b.2.22 $88$ $2$ $2$ $0$
88.96.0-88.c.1.13 $88$ $2$ $2$ $0$
88.96.0-88.e.1.13 $88$ $2$ $2$ $0$
88.96.0-88.f.1.13 $88$ $2$ $2$ $0$
88.96.0-88.h.1.13 $88$ $2$ $2$ $0$
88.96.0-88.j.2.16 $88$ $2$ $2$ $0$
88.96.0-88.l.1.15 $88$ $2$ $2$ $0$
88.96.0-88.n.1.15 $88$ $2$ $2$ $0$
88.96.0-88.p.2.3 $88$ $2$ $2$ $0$
88.96.0-88.r.2.5 $88$ $2$ $2$ $0$
88.96.0-88.t.2.5 $88$ $2$ $2$ $0$
88.96.0-88.v.1.3 $88$ $2$ $2$ $0$
88.96.0-88.x.2.6 $88$ $2$ $2$ $0$
88.96.0-88.y.1.4 $88$ $2$ $2$ $0$
88.96.0-88.ba.1.4 $88$ $2$ $2$ $0$
88.96.0-88.bb.2.6 $88$ $2$ $2$ $0$
88.96.1-88.q.1.7 $88$ $2$ $2$ $1$
88.96.1-88.s.1.7 $88$ $2$ $2$ $1$
88.96.1-88.x.1.15 $88$ $2$ $2$ $1$
88.96.1-88.y.1.13 $88$ $2$ $2$ $1$
88.96.1-88.bd.1.16 $88$ $2$ $2$ $1$
88.96.1-88.bf.2.8 $88$ $2$ $2$ $1$
88.96.1-88.bh.1.15 $88$ $2$ $2$ $1$
88.96.1-88.bj.1.16 $88$ $2$ $2$ $1$
264.96.0-264.i.2.20 $264$ $2$ $2$ $0$
264.96.0-264.j.2.21 $264$ $2$ $2$ $0$
264.96.0-264.m.2.25 $264$ $2$ $2$ $0$
264.96.0-264.n.2.25 $264$ $2$ $2$ $0$
264.96.0-264.ba.2.19 $264$ $2$ $2$ $0$
264.96.0-264.bd.2.19 $264$ $2$ $2$ $0$
264.96.0-264.bi.2.25 $264$ $2$ $2$ $0$
264.96.0-264.bl.2.25 $264$ $2$ $2$ $0$
264.96.0-264.bq.2.11 $264$ $2$ $2$ $0$
264.96.0-264.bt.1.4 $264$ $2$ $2$ $0$
264.96.0-264.by.1.6 $264$ $2$ $2$ $0$
264.96.0-264.cb.2.14 $264$ $2$ $2$ $0$
264.96.0-264.cn.1.6 $264$ $2$ $2$ $0$
264.96.0-264.co.2.7 $264$ $2$ $2$ $0$
264.96.0-264.cr.2.11 $264$ $2$ $2$ $0$
264.96.0-264.cs.1.16 $264$ $2$ $2$ $0$
264.96.1-264.cc.1.6 $264$ $2$ $2$ $1$
264.96.1-264.cd.2.13 $264$ $2$ $2$ $1$
264.96.1-264.cg.2.21 $264$ $2$ $2$ $1$
264.96.1-264.ch.1.31 $264$ $2$ $2$ $1$
264.96.1-264.dv.2.6 $264$ $2$ $2$ $1$
264.96.1-264.dy.1.23 $264$ $2$ $2$ $1$
264.96.1-264.ed.1.27 $264$ $2$ $2$ $1$
264.96.1-264.eg.2.29 $264$ $2$ $2$ $1$
264.144.4-264.bp.1.5 $264$ $3$ $3$ $4$
264.192.3-264.dy.1.15 $264$ $4$ $4$ $3$