Properties

Label 84.224.6-21.a.1.16
Level $84$
Index $224$
Genus $6$
Cusps $8$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $84$ $\SL_2$-level: $42$ Newform level: $147$
Index: $224$ $\PSL_2$-index:$112$
Genus: $6 = 1 + \frac{ 112 }{12} - \frac{ 0 }{4} - \frac{ 1 }{3} - \frac{ 8 }{2}$
Cusps: $8$ (of which $2$ are rational) Cusp widths $7^{4}\cdot21^{4}$ Cusp orbits $1^{2}\cdot3^{2}$
Elliptic points: $0$ of order $2$ and $1$ of order $3$
Analytic rank: not computed
$\Q$-gonality: $3 \le \gamma \le 6$
$\overline{\Q}$-gonality: $3 \le \gamma \le 6$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 21B6

Level structure

$\GL_2(\Z/84\Z)$-generators: $\begin{bmatrix}0&55\\65&28\end{bmatrix}$, $\begin{bmatrix}4&77\\49&15\end{bmatrix}$, $\begin{bmatrix}7&23\\37&42\end{bmatrix}$, $\begin{bmatrix}42&37\\19&63\end{bmatrix}$, $\begin{bmatrix}42&41\\73&14\end{bmatrix}$
Contains $-I$: no $\quad$ (see 21.112.6.a.1 for the level structure with $-I$)
Cyclic 84-isogeny field degree: $12$
Cyclic 84-torsion field degree: $288$
Full 84-torsion field degree: $41472$

Models

Canonical model in $\mathbb{P}^{ 5 }$ defined by 6 equations

$ 0 $ $=$ $ 2 x w - 2 x t + 2 x u + 2 y z - y w + y t + z w + w^{2} - w t - 2 w u $
$=$ $x^{2} - 2 x y - x w + 2 x t - x u - 2 y w - 4 y t + 2 y u - z w + w t$
$=$ $x y - x z - 2 x w + x t - x u - 2 y^{2} - y w + y t - 2 y u - 3 z w + 2 w t - w u$
$=$ $x^{2} - x w + 2 x u - 4 y^{2} - 3 y z + y t - 3 y u - z^{2} + z w + z t - z u - w t - w u - t^{2} + \cdots + 2 u^{2}$
$=$$\cdots$
Copy content Toggle raw display

Rational points

This modular curve has 2 rational cusps but no known non-cuspidal rational points. The following are the known rational points on this modular curve (one row per $j$-invariant).

Elliptic curve CM $j$-invariant $j$-heightCanonical model
27.a3 $-3$$0$ $0.000$$(-1:-1/2:-1/2:0:1:1)$, $(-8/9:-7/27:-13/27:2/27:34/27:1)$, $(-3/2:1/2:-1:1/2:1:0)$
no$\infty$ $0.000$$(2:1:0:0:0:0)$, $(0:-1:0:1:0:1)$
36.a1 $-12$$54000$ $= 2^{4} \cdot 3^{3} \cdot 5^{3}$$10.897$$(2:1:-5:0:-2:1)$
27.a1 $-27$$-12288000$ $= -1 \cdot 2^{15} \cdot 3 \cdot 5^{3}$$16.324$$(1:1/3:-2/3:4/3:2/3:1)$

Maps to other modular curves

$j$-invariant map of degree 112 from the canonical model of this modular curve to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{-370063318371571714003623936y^{12}+5304632452040841086432467337072y^{2}t^{10}+304060744719766105482499082428ywt^{10}+2478526581420113960440321174572zwt^{10}-1019476455726020569770297421820w^{2}t^{10}-4077137377662230207122348213900yt^{11}-2099346859464706225529341383512zt^{11}-1085780650438587765667287420628wt^{11}+574071350384602922358970260784t^{12}-1560972995837487036914651136y^{11}u+7144034061341788725748411948856y^{2}t^{9}u+98095575405045761876393747428ywt^{9}u+2308567443519375284601340499724zwt^{9}u-898591118373096612903603236996w^{2}t^{9}u-685960072658510786360045386992xt^{10}u+994447912845958187957300423484yt^{10}u-1034695974290709006935257736004zt^{10}u+816702506582164597950911537832wt^{10}u-1902654784342606442066889652668t^{11}u-2798253577632815229704491008y^{10}u^{2}+2676417085700997227728836567976y^{2}t^{8}u^{2}-2550336802050745155197320804296ywt^{8}u^{2}-1200419935740139458370878067720zwt^{8}u^{2}+398406381579179116779247731672w^{2}t^{8}u^{2}-494639114971353208685612900340xt^{9}u^{2}+7897223621784414128919221373636yt^{9}u^{2}+2307669289813122128641273672664zt^{9}u^{2}+2298906095633356176603100942904wt^{9}u^{2}-1012299842568732628050566395228t^{10}u^{2}-434376960536049797665953792y^{9}u^{3}-2307699430476670842515400665728y^{2}t^{7}u^{3}-4807973095691879495289414283280ywt^{7}u^{3}-3387235220278698518966246683456zwt^{7}u^{3}+1552909499744434181784420554064w^{2}t^{7}u^{3}+1093678226106759057827470521540xt^{8}u^{3}+2833561884772583392974162117340yt^{8}u^{3}+2253669179015208713332938151060zt^{8}u^{3}+1578773155651539934414476060052wt^{8}u^{3}+2186435759910029550112869938784t^{9}u^{3}+6938201364475214093366002176y^{8}u^{4}+6693521770920862708594615465488y^{2}t^{6}u^{4}+5620395783011083915419800013660ywt^{6}u^{4}+6874864668572764034218259732044zwt^{6}u^{4}-1725960430741479047152216327708w^{2}t^{6}u^{4}+382285571806912108402689161288xt^{7}u^{4}-15212373005902379584515981230740yt^{7}u^{4}-5741021037763088638377826694384zt^{7}u^{4}-4871646180853552014231982157836wt^{7}u^{4}+3631903729549847867979014450488t^{8}u^{4}+12626874081781541623827975168y^{7}u^{5}+700788782919033736442508101416y^{2}t^{5}u^{5}+4224582784963117102403382931244ywt^{5}u^{5}+1216971808463825194186374098228zwt^{5}u^{5}-746300334220850791086492346524w^{2}t^{5}u^{5}-2944321899586655766716435064496xt^{6}u^{5}+16688717070418620999792741628236yt^{6}u^{5}+3713189018091831131009035658016zt^{6}u^{5}+2571055495223976958235785461820wt^{6}u^{5}-10510481492377444763079237121296t^{7}u^{5}+12097990557318647038496453280y^{6}u^{6}-3110114846979923141229435147296y^{2}t^{4}u^{6}-3914137972912377655692626150569ywt^{4}u^{6}-4472958774021738013783932432683zwt^{4}u^{6}+876043849358052979318646711297w^{2}t^{4}u^{6}+2693831385226048639010118695792xt^{5}u^{6}+784617342040864139377441007815yt^{5}u^{6}+2042102762879023031150267850308zt^{5}u^{6}+2932006871819973745290994357689wt^{5}u^{6}+4774511728735280925545212851728t^{6}u^{6}+13720207410946831126157937216y^{5}u^{7}+1079539929296353687702066478224y^{2}t^{3}u^{7}+23808156254209580281290729740ywt^{3}u^{7}+1234112822137602576495761470980zwt^{3}u^{7}-277705618212382200626755422628w^{2}t^{3}u^{7}+501098195127019461713903104356xt^{4}u^{7}-7517918249908195961296299135336yt^{4}u^{7}-1913497494519937277451570233338zt^{4}u^{7}-2553316158800386176399969147178wt^{4}u^{7}+3221833509290319945695240198604t^{5}u^{7}+27379172729564417801656984752y^{4}u^{8}+98625982721720690349135195726y^{2}t^{2}u^{8}+251271262682241391747064619355ywt^{2}u^{8}+251559634233247184110217380597zwt^{2}u^{8}-27371010417300194051005497171w^{2}t^{2}u^{8}-671609155150391158459987082162xt^{3}u^{8}+2607313042671698448434306475803yt^{3}u^{8}+343969134066605980139654753712zt^{3}u^{8}+751915207220169784635030373893wt^{3}u^{8}-3913386265060414742473674156482t^{4}u^{8}+56478059303565351137603475348y^{3}u^{9}-103161113829111727627334931324y^{2}tu^{9}+23715527477330339470440099836ywtu^{9}-19263973201907835989726293876zwtu^{9}+9118351079568334278060266412w^{2}tu^{9}+77472876069469431999705140562xt^{2}u^{9}+195976265729770208365131898862yt^{2}u^{9}+59869425504233725280982457397zt^{2}u^{9}+100104626689431585103966441309wt^{2}u^{9}+771127239032073119241824916613t^{3}u^{9}+61623532429670029159516936838y^{2}u^{10}+47571478534481168837907007216ywu^{10}+62012794411022770990493036022zwu^{10}-31644186986153705273724094072w^{2}u^{10}+43217887726969938102926304275xtu^{10}-148056466968795579005604447389ytu^{10}-58348812326022259386283389948ztu^{10}-55304791549064687238229142494wtu^{10}+144728887861111706841717249081t^{2}u^{10}+4946100303732283165267506177xu^{11}+38909584270984328590474029209yu^{11}+2136192149980604789250639147zu^{11}+57544607428431169235235926999wu^{11}-75731951665868619178502629870tu^{11}+36539345386646203936099787816u^{12}}{-12941283110457696164958256y^{2}t^{10}-1926438396143366835146998ywt^{10}-6518226477959464955265334zwt^{10}+2657048526105731441982746w^{2}t^{10}+10961483049488392061114978yt^{11}+5474517282198027725042808zt^{11}+2862520103368324674141482wt^{11}-1658979846969645980402560t^{12}+43625183372387008799560440y^{2}t^{9}u+18837490210470771949858056ywt^{9}u+29334822682308969480060112zwt^{9}u-11584454699603742019802144w^{2}t^{9}u+1996305118752134639627948xt^{10}u-65291148987424798517507064yt^{10}u-27065166507142362172521920zt^{10}u-17486938742979700214118528wt^{10}u+15668164493953366080909524t^{11}u-88834251310757778423994704y^{2}t^{8}u^{2}-60683728928048358371434552ywt^{8}u^{2}-72212007363433798674925836zwt^{8}u^{2}+25948423044666091193294568w^{2}t^{8}u^{2}-12290239920010976136688916xt^{9}u^{2}+207290089169880025404043172yt^{9}u^{2}+75882617627280885142915496zt^{9}u^{2}+48784841220893203045080848wt^{9}u^{2}-65403718974268866586666764t^{10}u^{2}+116416691329050526890943600y^{2}t^{7}u^{3}+59657049536965220495991304ywt^{7}u^{3}+88727905005255191358053176zwt^{7}u^{3}-27293197965246853771511368w^{2}t^{7}u^{3}+44959359662108767238266456xt^{8}u^{3}-421174443648869442212494436yt^{8}u^{3}-135434274329092031259360744zt^{8}u^{3}-70025331018490790385797360wt^{8}u^{3}+164532291290292297306121800t^{9}u^{3}-4868568306887755772698592y^{2}t^{6}u^{4}+102057461406411983580445400ywt^{6}u^{4}+41559330685346916005042248zwt^{6}u^{4}-17774055770551171897564136w^{2}t^{6}u^{4}-100636148058772147673264560xt^{7}u^{4}+441221417666221367264649112yt^{7}u^{4}+99689083217952347681822728zt^{7}u^{4}+1253776232814169734117536wt^{7}u^{4}-240310136441479915576296540t^{8}u^{4}-227515479660211311126692400y^{2}t^{5}u^{5}-310757874309528927499183392ywt^{5}u^{5}-283677999538990959541708048zwt^{5}u^{5}+84105009461810043077341712w^{2}t^{5}u^{5}+115655820389947776270087448xt^{6}u^{5}+52812570199615713456810344yt^{6}u^{5}+101709961673335708617890000zt^{6}u^{5}+185883513339721696418830400wt^{6}u^{5}+115050618526962748699387064t^{7}u^{5}+295765125558231905757648768y^{2}t^{4}u^{6}+269615012416306826396618064ywt^{4}u^{6}+342155277398120540507575072zwt^{4}u^{6}-88210223541584372467722000w^{2}t^{4}u^{6}-26866189849901407737201064xt^{5}u^{6}-719845021807343400052279048yt^{5}u^{6}-278801731069267338175245464zt^{5}u^{6}-324531652191613295744778568wt^{5}u^{6}+237648652287589364587148320t^{6}u^{6}-138508904408081578834197056y^{2}t^{3}u^{7}-55106772964620297616105536ywt^{3}u^{7}-151203491558228366101480160zwt^{3}u^{7}+35566439329756425516493536w^{2}t^{3}u^{7}-81209937977413766884652240xt^{4}u^{7}+818491902678293440867269104yt^{4}u^{7}+228597728344173521304641824zt^{4}u^{7}+253996189070074231370200912wt^{4}u^{7}-494508015812887338269307440t^{5}u^{7}+11049707408046235280202368y^{2}t^{2}u^{8}-31613560885449740525299384ywt^{2}u^{8}-846961209267986884730680zwt^{2}u^{8}-1816706725600334712193952w^{2}t^{2}u^{8}+85941690910756983467614176xt^{3}u^{8}-389310910133884566959398512yt^{3}u^{8}-77176860555586395332641696zt^{3}u^{8}-88193026570837726100659264wt^{3}u^{8}+395427061976740082721852280t^{4}u^{8}+7455794537710672710082680y^{2}tu^{9}+11394117045056423271343428ywtu^{9}+14364142994982159279996636zwtu^{9}-2260374598663561108312476w^{2}tu^{9}-29457238198954829311628272xt^{2}u^{9}+55854166310671315236868708yt^{2}u^{9}+5867672135681714052089856zt^{2}u^{9}+1497623358655039702605756wt^{2}u^{9}-137264494588595741594873592t^{3}u^{9}-1111165369381663976030112y^{2}u^{10}-470164185420802913610864ywu^{10}-1592732277840668221574496zwu^{10}+373169024681208567321168w^{2}u^{10}+1450180380417069963155088xtu^{10}+11304503588026665015511176ytu^{10}+1737867585612027555970704ztu^{10}+7015386648448638342363624wtu^{10}+3170818534145838801681216t^{2}u^{10}+456397543070396164683936xu^{11}-2377191519221636001922128yu^{11}-325545355512740121128352zu^{11}-1046058388669555980820992wu^{11}+8624470407504526037630616tu^{11}-1063300971272427526003056u^{12}}$

Modular covers

The following modular covers realize this modular curve as a fiber product over $X(1)$.

Factor curve Level Index Degree Genus Rank
$X_{\mathrm{sp}}^+(7)$ $7$ $8$ $4$ $0$ $0$
12.8.0-3.a.1.3 $12$ $28$ $28$ $0$ $0$

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
12.8.0-3.a.1.3 $12$ $28$ $28$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
84.448.11-21.a.1.12 $84$ $2$ $2$ $11$
84.448.11-84.a.1.3 $84$ $2$ $2$ $11$
84.448.11-21.b.1.7 $84$ $2$ $2$ $11$
84.448.11-84.b.1.16 $84$ $2$ $2$ $11$
84.448.11-21.c.1.10 $84$ $2$ $2$ $11$
84.448.11-84.c.1.8 $84$ $2$ $2$ $11$
84.448.11-21.d.1.7 $84$ $2$ $2$ $11$
84.448.11-84.d.1.11 $84$ $2$ $2$ $11$
84.448.15-42.a.1.6 $84$ $2$ $2$ $15$
84.448.15-84.a.1.20 $84$ $2$ $2$ $15$
84.448.15-42.b.1.2 $84$ $2$ $2$ $15$
84.448.15-84.b.1.2 $84$ $2$ $2$ $15$
84.448.15-42.c.1.3 $84$ $2$ $2$ $15$
84.448.15-42.d.1.1 $84$ $2$ $2$ $15$
84.448.15-42.e.1.6 $84$ $2$ $2$ $15$
84.448.15-84.e.1.2 $84$ $2$ $2$ $15$
84.448.15-42.f.1.6 $84$ $2$ $2$ $15$
84.448.15-84.f.1.5 $84$ $2$ $2$ $15$
84.448.15-42.g.1.6 $84$ $2$ $2$ $15$
84.448.15-84.g.1.5 $84$ $2$ $2$ $15$
84.448.15-42.h.1.5 $84$ $2$ $2$ $15$
84.448.15-84.h.1.16 $84$ $2$ $2$ $15$
84.448.15-84.i.1.14 $84$ $2$ $2$ $15$
84.448.15-84.j.1.6 $84$ $2$ $2$ $15$
168.448.11-168.a.1.23 $168$ $2$ $2$ $11$
168.448.11-168.b.1.11 $168$ $2$ $2$ $11$
168.448.11-168.c.1.7 $168$ $2$ $2$ $11$
168.448.11-168.d.1.24 $168$ $2$ $2$ $11$
168.448.11-168.e.1.23 $168$ $2$ $2$ $11$
168.448.11-168.f.1.15 $168$ $2$ $2$ $11$
168.448.11-168.g.1.15 $168$ $2$ $2$ $11$
168.448.11-168.h.1.19 $168$ $2$ $2$ $11$
168.448.15-168.a.1.6 $168$ $2$ $2$ $15$
168.448.15-168.b.1.23 $168$ $2$ $2$ $15$
168.448.15-168.c.1.6 $168$ $2$ $2$ $15$
168.448.15-168.d.1.8 $168$ $2$ $2$ $15$
168.448.15-168.g.1.9 $168$ $2$ $2$ $15$
168.448.15-168.h.1.3 $168$ $2$ $2$ $15$
168.448.15-168.i.1.4 $168$ $2$ $2$ $15$
168.448.15-168.j.1.6 $168$ $2$ $2$ $15$
168.448.15-168.k.1.15 $168$ $2$ $2$ $15$
168.448.15-168.l.1.16 $168$ $2$ $2$ $15$
168.448.15-168.m.1.31 $168$ $2$ $2$ $15$
168.448.15-168.n.1.13 $168$ $2$ $2$ $15$
168.448.15-168.o.1.16 $168$ $2$ $2$ $15$
168.448.15-168.p.1.16 $168$ $2$ $2$ $15$
168.448.15-168.q.1.11 $168$ $2$ $2$ $15$
168.448.15-168.r.1.23 $168$ $2$ $2$ $15$