Properties

Label 60.144.5.kw.2
Level $60$
Index $144$
Genus $5$
Analytic rank $2$
Cusps $16$
$\Q$-cusps $0$

Related objects

Downloads

Learn more

Invariants

Level: $60$ $\SL_2$-level: $20$ Newform level: $3600$
Index: $144$ $\PSL_2$-index:$144$
Genus: $5 = 1 + \frac{ 144 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 16 }{2}$
Cusps: $16$ (none of which are rational) Cusp widths $2^{4}\cdot4^{4}\cdot10^{4}\cdot20^{4}$ Cusp orbits $4^{4}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
Analytic rank: $2$
$\Q$-gonality: $4$
$\overline{\Q}$-gonality: $4$
Rational cusps: $0$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 20I5
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 60.144.5.924

Level structure

$\GL_2(\Z/60\Z)$-generators: $\begin{bmatrix}17&15\\2&1\end{bmatrix}$, $\begin{bmatrix}29&55\\6&19\end{bmatrix}$, $\begin{bmatrix}53&20\\50&27\end{bmatrix}$
Contains $-I$: yes
Quadratic refinements: none in database
Cyclic 60-isogeny field degree: $8$
Cyclic 60-torsion field degree: $128$
Full 60-torsion field degree: $15360$

Jacobian

Conductor: $2^{16}\cdot3^{4}\cdot5^{7}$
Simple: no
Squarefree: yes
Decomposition: $1^{3}\cdot2$
Newforms: 40.2.c.a, 180.2.a.a, 400.2.a.e, 3600.2.a.be

Models

Canonical model in $\mathbb{P}^{ 4 }$ defined by 3 equations

$ 0 $ $=$ $ x^{2} + 3 x y + x z + z^{2} $
$=$ $x^{2} + 3 x y - 4 x z + 5 y^{2} - 4 z^{2} + w^{2} + t^{2}$
$=$ $3 x^{2} - 6 x y + 8 x z + 10 y^{2} + 8 z^{2} - w^{2} - 2 t^{2}$
Copy content Toggle raw display

Singular plane model Singular plane model

$ 0 $ $=$ $ 13125 x^{8} + 1500 x^{7} y + 325 x^{6} y^{2} - 22500 x^{6} z^{2} + 10 x^{5} y^{3} - 3150 x^{5} y z^{2} + \cdots + 37746 z^{8} $
Copy content Toggle raw display

Rational points

This modular curve has no real points, and therefore no rational points.

Maps between models of this curve

Birational map from canonical model to plane model:

$\displaystyle X$ $=$ $\displaystyle x-y$
$\displaystyle Y$ $=$ $\displaystyle 5z+5w$
$\displaystyle Z$ $=$ $\displaystyle \frac{1}{3}t$

Maps to other modular curves

$j$-invariant map of degree 144 from the canonical model of this modular curve to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle -3^3\,\frac{56949480xzw^{16}+265764240xzw^{14}t^{2}+392027040xzw^{12}t^{4}+23950080xzw^{10}t^{6}-495590400xzw^{8}t^{8}-492549120xzw^{6}t^{10}-175196160xzw^{4}t^{12}-15298560xzw^{2}t^{14}+1351680xzt^{16}+56949480z^{2}w^{16}+265764240z^{2}w^{14}t^{2}+392027040z^{2}w^{12}t^{4}+23950080z^{2}w^{10}t^{6}-495590400z^{2}w^{8}t^{8}-492549120z^{2}w^{6}t^{10}-175196160z^{2}w^{4}t^{12}-15298560z^{2}w^{2}t^{14}+1351680z^{2}t^{16}-9111771w^{18}-55430244w^{16}t^{2}-124217712w^{14}t^{4}-99395856w^{12}t^{6}+60317568w^{10}t^{8}+178354944w^{8}t^{10}+135370496w^{6}t^{12}+43219968w^{4}t^{14}+4153344w^{2}t^{16}-192512t^{18}}{t^{4}(3w^{2}+4t^{2})(3645xzw^{10}+12150xzw^{8}t^{2}+4050xzw^{6}t^{4}-24300xzw^{4}t^{6}-27000xzw^{2}t^{8}-5280xzt^{10}+3645z^{2}w^{10}+12150z^{2}w^{8}t^{2}+4050z^{2}w^{6}t^{4}-24300z^{2}w^{4}t^{6}-27000z^{2}w^{2}t^{8}-5280z^{2}t^{10}-729w^{12}-3159w^{10}t^{2}-3159w^{8}t^{4}+4374w^{6}t^{6}+10611w^{4}t^{8}+6360w^{2}t^{10}+752t^{12})}$

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank Kernel decomposition
20.72.3.bj.1 $20$ $2$ $2$ $3$ $1$ $1^{2}$
60.72.1.bb.1 $60$ $2$ $2$ $1$ $0$ $1^{2}\cdot2$
60.72.1.cg.2 $60$ $2$ $2$ $1$ $1$ $1^{2}\cdot2$
60.72.1.dr.2 $60$ $2$ $2$ $1$ $1$ $1^{2}\cdot2$
60.72.3.nf.2 $60$ $2$ $2$ $3$ $0$ $1^{2}$
60.72.3.ou.1 $60$ $2$ $2$ $3$ $2$ $2$
60.72.3.qy.1 $60$ $2$ $2$ $3$ $1$ $1^{2}$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus Rank Kernel decomposition
60.432.29.bzb.2 $60$ $3$ $3$ $29$ $4$ $1^{12}\cdot2^{6}$
60.576.33.kk.1 $60$ $4$ $4$ $33$ $8$ $1^{14}\cdot2^{7}$
60.720.37.hz.1 $60$ $5$ $5$ $37$ $7$ $1^{16}\cdot2^{8}$