Properties

Label 48.48.0-48.g.1.31
Level $48$
Index $48$
Genus $0$
Analytic rank $0$
Cusps $6$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $48$ $\SL_2$-level: $16$
Index: $48$ $\PSL_2$-index:$24$
Genus: $0 = 1 + \frac{ 24 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (of which $2$ are rational) Cusp widths $1^{4}\cdot4\cdot16$ Cusp orbits $1^{2}\cdot2^{2}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 16C0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 48.48.0.193

Level structure

$\GL_2(\Z/48\Z)$-generators: $\begin{bmatrix}5&12\\0&29\end{bmatrix}$, $\begin{bmatrix}9&7\\32&27\end{bmatrix}$, $\begin{bmatrix}19&46\\4&41\end{bmatrix}$, $\begin{bmatrix}37&43\\20&37\end{bmatrix}$, $\begin{bmatrix}41&4\\12&47\end{bmatrix}$
Contains $-I$: no $\quad$ (see 48.24.0.g.1 for the level structure with $-I$)
Cyclic 48-isogeny field degree: $8$
Cyclic 48-torsion field degree: $128$
Full 48-torsion field degree: $24576$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 108 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 24 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle -\frac{2^4}{3^8}\cdot\frac{x^{24}(81x^{8}-144x^{4}y^{4}+16y^{8})^{3}}{y^{4}x^{40}(3x^{2}-y^{2})(3x^{2}+y^{2})}$

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
8.24.0-8.n.1.11 $8$ $2$ $2$ $0$ $0$
48.24.0-8.n.1.1 $48$ $2$ $2$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
48.96.0-48.bc.1.15 $48$ $2$ $2$ $0$
48.96.0-48.bc.2.11 $48$ $2$ $2$ $0$
48.96.0-48.bd.1.15 $48$ $2$ $2$ $0$
48.96.0-48.bd.2.11 $48$ $2$ $2$ $0$
48.96.0-48.be.1.15 $48$ $2$ $2$ $0$
48.96.0-48.be.2.11 $48$ $2$ $2$ $0$
48.96.0-48.bf.1.15 $48$ $2$ $2$ $0$
48.96.0-48.bf.2.13 $48$ $2$ $2$ $0$
48.96.0-48.bg.1.13 $48$ $2$ $2$ $0$
48.96.0-48.bg.2.15 $48$ $2$ $2$ $0$
48.96.0-48.bh.1.11 $48$ $2$ $2$ $0$
48.96.0-48.bh.2.15 $48$ $2$ $2$ $0$
48.96.0-48.bi.1.11 $48$ $2$ $2$ $0$
48.96.0-48.bi.2.15 $48$ $2$ $2$ $0$
48.96.0-48.bj.1.11 $48$ $2$ $2$ $0$
48.96.0-48.bj.2.15 $48$ $2$ $2$ $0$
48.96.1-48.b.2.14 $48$ $2$ $2$ $1$
48.96.1-48.d.1.14 $48$ $2$ $2$ $1$
48.96.1-48.h.1.6 $48$ $2$ $2$ $1$
48.96.1-48.i.1.10 $48$ $2$ $2$ $1$
48.96.1-48.r.1.16 $48$ $2$ $2$ $1$
48.96.1-48.s.1.12 $48$ $2$ $2$ $1$
48.96.1-48.v.1.12 $48$ $2$ $2$ $1$
48.96.1-48.w.1.8 $48$ $2$ $2$ $1$
48.144.4-48.bg.1.33 $48$ $3$ $3$ $4$
48.192.3-48.qf.1.52 $48$ $4$ $4$ $3$
240.96.0-240.ee.1.22 $240$ $2$ $2$ $0$
240.96.0-240.ee.2.6 $240$ $2$ $2$ $0$
240.96.0-240.ef.1.27 $240$ $2$ $2$ $0$
240.96.0-240.ef.2.10 $240$ $2$ $2$ $0$
240.96.0-240.eg.1.22 $240$ $2$ $2$ $0$
240.96.0-240.eg.2.6 $240$ $2$ $2$ $0$
240.96.0-240.eh.1.27 $240$ $2$ $2$ $0$
240.96.0-240.eh.2.10 $240$ $2$ $2$ $0$
240.96.0-240.ei.1.22 $240$ $2$ $2$ $0$
240.96.0-240.ei.2.21 $240$ $2$ $2$ $0$
240.96.0-240.ej.1.19 $240$ $2$ $2$ $0$
240.96.0-240.ej.2.12 $240$ $2$ $2$ $0$
240.96.0-240.ek.1.22 $240$ $2$ $2$ $0$
240.96.0-240.ek.2.21 $240$ $2$ $2$ $0$
240.96.0-240.el.1.19 $240$ $2$ $2$ $0$
240.96.0-240.el.2.12 $240$ $2$ $2$ $0$
240.96.1-240.go.1.8 $240$ $2$ $2$ $1$
240.96.1-240.gp.1.26 $240$ $2$ $2$ $1$
240.96.1-240.gs.1.8 $240$ $2$ $2$ $1$
240.96.1-240.gt.1.18 $240$ $2$ $2$ $1$
240.96.1-240.he.1.28 $240$ $2$ $2$ $1$
240.96.1-240.hf.1.8 $240$ $2$ $2$ $1$
240.96.1-240.hi.1.20 $240$ $2$ $2$ $1$
240.96.1-240.hj.1.8 $240$ $2$ $2$ $1$
240.240.8-240.y.1.18 $240$ $5$ $5$ $8$
240.288.7-240.ym.1.114 $240$ $6$ $6$ $7$
240.480.15-240.ca.1.22 $240$ $10$ $10$ $15$