Properties

Label 264.48.0-8.e.1.4
Level $264$
Index $48$
Genus $0$
Cusps $6$
$\Q$-cusps $4$

Related objects

Downloads

Learn more

Invariants

Level: $264$ $\SL_2$-level: $8$
Index: $48$ $\PSL_2$-index:$24$
Genus: $0 = 1 + \frac{ 24 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (of which $4$ are rational) Cusp widths $2^{2}\cdot4^{3}\cdot8$ Cusp orbits $1^{4}\cdot2$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $4$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8J0

Level structure

$\GL_2(\Z/264\Z)$-generators: $\begin{bmatrix}7&220\\48&35\end{bmatrix}$, $\begin{bmatrix}127&20\\132&163\end{bmatrix}$, $\begin{bmatrix}151&0\\174&113\end{bmatrix}$, $\begin{bmatrix}151&104\\96&167\end{bmatrix}$, $\begin{bmatrix}169&184\\6&169\end{bmatrix}$, $\begin{bmatrix}215&32\\242&157\end{bmatrix}$
Contains $-I$: no $\quad$ (see 8.24.0.e.1 for the level structure with $-I$)
Cyclic 264-isogeny field degree: $96$
Cyclic 264-torsion field degree: $7680$
Full 264-torsion field degree: $20275200$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 220 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 24 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{x^{24}(x^{8}-16x^{6}y^{2}+320x^{4}y^{4}-2048x^{2}y^{6}+4096y^{8})^{3}}{y^{4}x^{32}(x-2y)^{2}(x+2y)^{2}(x^{2}-8y^{2})^{4}}$

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
264.24.0-4.b.1.3 $264$ $2$ $2$ $0$ $?$
264.24.0-4.b.1.4 $264$ $2$ $2$ $0$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
264.96.0-8.b.1.6 $264$ $2$ $2$ $0$
264.96.0-8.c.1.6 $264$ $2$ $2$ $0$
264.96.0-8.e.1.4 $264$ $2$ $2$ $0$
264.96.0-8.f.1.4 $264$ $2$ $2$ $0$
264.96.0-8.h.1.2 $264$ $2$ $2$ $0$
264.96.0-8.i.1.2 $264$ $2$ $2$ $0$
264.96.0-24.i.2.15 $264$ $2$ $2$ $0$
264.96.0-88.i.2.14 $264$ $2$ $2$ $0$
264.96.0-24.j.2.11 $264$ $2$ $2$ $0$
264.96.0-88.j.2.13 $264$ $2$ $2$ $0$
264.96.0-8.k.1.4 $264$ $2$ $2$ $0$
264.96.0-8.l.1.2 $264$ $2$ $2$ $0$
264.96.0-24.m.2.15 $264$ $2$ $2$ $0$
264.96.0-88.m.2.15 $264$ $2$ $2$ $0$
264.96.0-24.n.2.13 $264$ $2$ $2$ $0$
264.96.0-88.n.2.14 $264$ $2$ $2$ $0$
264.96.0-88.q.1.4 $264$ $2$ $2$ $0$
264.96.0-24.r.1.1 $264$ $2$ $2$ $0$
264.96.0-88.r.1.6 $264$ $2$ $2$ $0$
264.96.0-24.s.1.3 $264$ $2$ $2$ $0$
264.96.0-88.u.1.7 $264$ $2$ $2$ $0$
264.96.0-24.v.1.8 $264$ $2$ $2$ $0$
264.96.0-88.v.1.5 $264$ $2$ $2$ $0$
264.96.0-24.w.1.6 $264$ $2$ $2$ $0$
264.96.0-264.bc.2.12 $264$ $2$ $2$ $0$
264.96.0-264.be.2.26 $264$ $2$ $2$ $0$
264.96.0-264.bk.2.30 $264$ $2$ $2$ $0$
264.96.0-264.bm.2.24 $264$ $2$ $2$ $0$
264.96.0-264.bs.1.4 $264$ $2$ $2$ $0$
264.96.0-264.bu.1.11 $264$ $2$ $2$ $0$
264.96.0-264.ca.1.13 $264$ $2$ $2$ $0$
264.96.0-264.cc.1.3 $264$ $2$ $2$ $0$
264.96.1-8.i.2.4 $264$ $2$ $2$ $1$
264.96.1-8.k.2.6 $264$ $2$ $2$ $1$
264.96.1-8.m.2.7 $264$ $2$ $2$ $1$
264.96.1-8.n.1.4 $264$ $2$ $2$ $1$
264.96.1-24.be.2.13 $264$ $2$ $2$ $1$
264.96.1-88.be.2.16 $264$ $2$ $2$ $1$
264.96.1-24.bf.2.13 $264$ $2$ $2$ $1$
264.96.1-88.bf.2.14 $264$ $2$ $2$ $1$
264.96.1-24.bi.2.15 $264$ $2$ $2$ $1$
264.96.1-88.bi.2.15 $264$ $2$ $2$ $1$
264.96.1-24.bj.2.15 $264$ $2$ $2$ $1$
264.96.1-88.bj.2.13 $264$ $2$ $2$ $1$
264.96.1-264.dx.2.31 $264$ $2$ $2$ $1$
264.96.1-264.dz.2.32 $264$ $2$ $2$ $1$
264.96.1-264.ef.2.32 $264$ $2$ $2$ $1$
264.96.1-264.eh.2.22 $264$ $2$ $2$ $1$
264.144.4-24.z.2.21 $264$ $3$ $3$ $4$
264.192.3-24.bq.2.45 $264$ $4$ $4$ $3$