Properties

Label 264.48.0-8.d.1.8
Level $264$
Index $48$
Genus $0$
Cusps $6$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $264$ $\SL_2$-level: $8$
Index: $48$ $\PSL_2$-index:$24$
Genus: $0 = 1 + \frac{ 24 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (of which $2$ are rational) Cusp widths $2^{2}\cdot4^{3}\cdot8$ Cusp orbits $1^{2}\cdot2^{2}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8J0

Level structure

$\GL_2(\Z/264\Z)$-generators: $\begin{bmatrix}5&172\\224&41\end{bmatrix}$, $\begin{bmatrix}27&148\\158&223\end{bmatrix}$, $\begin{bmatrix}81&136\\248&43\end{bmatrix}$, $\begin{bmatrix}175&52\\162&149\end{bmatrix}$, $\begin{bmatrix}193&56\\4&67\end{bmatrix}$, $\begin{bmatrix}195&212\\28&37\end{bmatrix}$
Contains $-I$: no $\quad$ (see 8.24.0.d.1 for the level structure with $-I$)
Cyclic 264-isogeny field degree: $96$
Cyclic 264-torsion field degree: $7680$
Full 264-torsion field degree: $20275200$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 136 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 24 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle 2^2\,\frac{x^{24}(256x^{8}+256x^{6}y^{2}+80x^{4}y^{4}+8x^{2}y^{6}+y^{8})^{3}}{y^{8}x^{28}(2x^{2}+y^{2})^{2}(4x^{2}+y^{2})^{4}}$

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
264.24.0-4.b.1.2 $264$ $2$ $2$ $0$ $?$
264.24.0-4.b.1.6 $264$ $2$ $2$ $0$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
264.96.0-8.a.1.1 $264$ $2$ $2$ $0$
264.96.0-8.b.2.10 $264$ $2$ $2$ $0$
264.96.0-8.d.1.1 $264$ $2$ $2$ $0$
264.96.0-8.e.1.1 $264$ $2$ $2$ $0$
264.96.0-8.g.1.6 $264$ $2$ $2$ $0$
264.96.0-24.g.2.6 $264$ $2$ $2$ $0$
264.96.0-88.g.2.6 $264$ $2$ $2$ $0$
264.96.0-8.h.1.4 $264$ $2$ $2$ $0$
264.96.0-24.h.2.3 $264$ $2$ $2$ $0$
264.96.0-88.h.2.4 $264$ $2$ $2$ $0$
264.96.0-8.j.1.4 $264$ $2$ $2$ $0$
264.96.0-8.k.2.6 $264$ $2$ $2$ $0$
264.96.0-24.k.1.1 $264$ $2$ $2$ $0$
264.96.0-88.k.1.2 $264$ $2$ $2$ $0$
264.96.0-24.l.1.2 $264$ $2$ $2$ $0$
264.96.0-88.l.1.1 $264$ $2$ $2$ $0$
264.96.0-88.o.1.10 $264$ $2$ $2$ $0$
264.96.0-24.p.1.9 $264$ $2$ $2$ $0$
264.96.0-88.p.2.14 $264$ $2$ $2$ $0$
264.96.0-24.q.2.13 $264$ $2$ $2$ $0$
264.96.0-88.s.2.15 $264$ $2$ $2$ $0$
264.96.0-24.t.2.16 $264$ $2$ $2$ $0$
264.96.0-88.t.1.11 $264$ $2$ $2$ $0$
264.96.0-24.u.2.12 $264$ $2$ $2$ $0$
264.96.0-264.x.2.9 $264$ $2$ $2$ $0$
264.96.0-264.z.2.26 $264$ $2$ $2$ $0$
264.96.0-264.bf.1.4 $264$ $2$ $2$ $0$
264.96.0-264.bh.1.1 $264$ $2$ $2$ $0$
264.96.0-264.bn.1.24 $264$ $2$ $2$ $0$
264.96.0-264.bp.1.32 $264$ $2$ $2$ $0$
264.96.0-264.bv.1.29 $264$ $2$ $2$ $0$
264.96.0-264.bx.2.21 $264$ $2$ $2$ $0$
264.96.1-8.e.2.5 $264$ $2$ $2$ $1$
264.96.1-8.i.1.3 $264$ $2$ $2$ $1$
264.96.1-8.l.1.3 $264$ $2$ $2$ $1$
264.96.1-8.m.2.3 $264$ $2$ $2$ $1$
264.96.1-24.bc.2.15 $264$ $2$ $2$ $1$
264.96.1-88.bc.2.16 $264$ $2$ $2$ $1$
264.96.1-24.bd.2.11 $264$ $2$ $2$ $1$
264.96.1-88.bd.2.11 $264$ $2$ $2$ $1$
264.96.1-24.bg.2.10 $264$ $2$ $2$ $1$
264.96.1-88.bg.2.9 $264$ $2$ $2$ $1$
264.96.1-24.bh.1.9 $264$ $2$ $2$ $1$
264.96.1-88.bh.1.10 $264$ $2$ $2$ $1$
264.96.1-264.ds.2.26 $264$ $2$ $2$ $1$
264.96.1-264.du.2.10 $264$ $2$ $2$ $1$
264.96.1-264.ea.1.5 $264$ $2$ $2$ $1$
264.96.1-264.ec.2.8 $264$ $2$ $2$ $1$
264.144.4-24.s.2.47 $264$ $3$ $3$ $4$
264.192.3-24.bn.2.16 $264$ $4$ $4$ $3$