Properties

Label 264.24.0-264.ba.1.31
Level $264$
Index $24$
Genus $0$
Cusps $4$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $264$ $\SL_2$-level: $8$
Index: $24$ $\PSL_2$-index:$12$
Genus: $0 = 1 + \frac{ 12 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (of which $2$ are rational) Cusp widths $1^{2}\cdot2\cdot8$ Cusp orbits $1^{2}\cdot2$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8C0

Level structure

$\GL_2(\Z/264\Z)$-generators: $\begin{bmatrix}47&232\\144&131\end{bmatrix}$, $\begin{bmatrix}52&35\\71&168\end{bmatrix}$, $\begin{bmatrix}164&125\\55&126\end{bmatrix}$, $\begin{bmatrix}191&16\\192&67\end{bmatrix}$, $\begin{bmatrix}251&96\\156&239\end{bmatrix}$
Contains $-I$: no $\quad$ (see 264.12.0.ba.1 for the level structure with $-I$)
Cyclic 264-isogeny field degree: $96$
Cyclic 264-torsion field degree: $7680$
Full 264-torsion field degree: $40550400$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points but none with conductor small enough to be contained within the database of elliptic curves over $\Q$.

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
8.12.0-4.c.1.3 $8$ $2$ $2$ $0$ $0$
264.12.0-4.c.1.4 $264$ $2$ $2$ $0$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
264.48.0-264.y.1.23 $264$ $2$ $2$ $0$
264.48.0-264.z.1.13 $264$ $2$ $2$ $0$
264.48.0-264.bm.1.3 $264$ $2$ $2$ $0$
264.48.0-264.bo.1.15 $264$ $2$ $2$ $0$
264.48.0-264.br.1.14 $264$ $2$ $2$ $0$
264.48.0-264.bs.1.10 $264$ $2$ $2$ $0$
264.48.0-264.cc.1.10 $264$ $2$ $2$ $0$
264.48.0-264.cf.1.14 $264$ $2$ $2$ $0$
264.48.0-264.ch.1.15 $264$ $2$ $2$ $0$
264.48.0-264.ci.1.11 $264$ $2$ $2$ $0$
264.48.0-264.cs.1.6 $264$ $2$ $2$ $0$
264.48.0-264.cv.1.15 $264$ $2$ $2$ $0$
264.48.0-264.cx.1.14 $264$ $2$ $2$ $0$
264.48.0-264.cy.1.13 $264$ $2$ $2$ $0$
264.48.0-264.dy.1.13 $264$ $2$ $2$ $0$
264.48.0-264.eb.1.15 $264$ $2$ $2$ $0$
264.72.2-264.dg.1.18 $264$ $3$ $3$ $2$
264.96.1-264.zw.1.61 $264$ $4$ $4$ $1$
264.288.9-264.ika.1.58 $264$ $12$ $12$ $9$