Properties

Label 264.24.0-132.a.1.6
Level $264$
Index $24$
Genus $0$
Cusps $4$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $264$ $\SL_2$-level: $4$
Index: $24$ $\PSL_2$-index:$12$
Genus: $0 = 1 + \frac{ 12 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (of which $2$ are rational) Cusp widths $2^{2}\cdot4^{2}$ Cusp orbits $1^{2}\cdot2$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 4E0

Level structure

$\GL_2(\Z/264\Z)$-generators: $\begin{bmatrix}47&158\\252&163\end{bmatrix}$, $\begin{bmatrix}55&134\\124&237\end{bmatrix}$, $\begin{bmatrix}115&192\\82&205\end{bmatrix}$, $\begin{bmatrix}121&222\\212&65\end{bmatrix}$, $\begin{bmatrix}145&32\\134&5\end{bmatrix}$
Contains $-I$: no $\quad$ (see 132.12.0.a.1 for the level structure with $-I$)
Cyclic 264-isogeny field degree: $192$
Cyclic 264-torsion field degree: $15360$
Full 264-torsion field degree: $40550400$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points but none with conductor small enough to be contained within the database of elliptic curves over $\Q$.

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
8.12.0-2.a.1.1 $8$ $2$ $2$ $0$ $0$
264.12.0-2.a.1.2 $264$ $2$ $2$ $0$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
264.48.0-132.a.1.7 $264$ $2$ $2$ $0$
264.48.0-264.b.1.1 $264$ $2$ $2$ $0$
264.48.0-264.b.1.12 $264$ $2$ $2$ $0$
264.48.0-132.c.1.6 $264$ $2$ $2$ $0$
264.48.0-132.c.1.13 $264$ $2$ $2$ $0$
264.48.0-132.d.1.3 $264$ $2$ $2$ $0$
264.48.0-132.d.1.5 $264$ $2$ $2$ $0$
264.48.0-264.f.1.3 $264$ $2$ $2$ $0$
264.48.0-264.f.1.10 $264$ $2$ $2$ $0$
264.48.0-132.g.1.2 $264$ $2$ $2$ $0$
264.48.0-132.g.1.5 $264$ $2$ $2$ $0$
264.48.0-264.j.1.2 $264$ $2$ $2$ $0$
264.48.0-264.j.1.11 $264$ $2$ $2$ $0$
264.48.0-264.s.1.4 $264$ $2$ $2$ $0$
264.48.0-264.s.1.9 $264$ $2$ $2$ $0$
264.72.2-132.c.1.4 $264$ $3$ $3$ $2$
264.96.1-132.c.1.9 $264$ $4$ $4$ $1$
264.288.9-132.c.1.13 $264$ $12$ $12$ $9$